Petroleum Processing and Petrochemicals ›› 2016, Vol. 47 ›› Issue (11): 48-55.
Previous Articles Next Articles
Received:
Revised:
Online:
Published:
Supported by:
Abstract: Heat integrated reactive separation process, which achieves thermal coupling between the reaction and separation processes, possesses the advantages of lower energy consumption and investment cost. In this study, a novel reactive absorption process was proposed for the methyl laurate synthesis by esterification of lauric acid. The steady-state models for reactive distillation and reactive absorption were established, respectively by the Aspen Plus simulator. The results show that significant energy saving of the reactive absorption process can be achieved, compared with the reactive distillation process. The investment cost of the reactive absorption process can also be reduced due to the use of only one column. Moreover, the dynamic performance of the reactive absorption process was investigated and a control structure was proposed. It is proved that the proposed control structure can handle the feed flow rate disturbance well, showing a good controllability of the reactive absorption process. Therefore, the reactive absorption process for synthesis of fatty acid ester with long chains is an attractive technology with development potential.
Key words: lauric acid esterification, reactive absorption, steady-state design, sensitivity analysis, dynamic control
CLC Number:
 
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.sylzyhg.com/EN/
http://www.sylzyhg.com/EN/Y2016/V47/I11/48