[1] 丁秀瓶. 催化裂化烟气脱硫脱硝助剂技术与工艺技术耦合[J]. 化工进展, 2018, 37: 3280-3281.[2] 李景辉. 石油化工催化裂化工艺技术优化[J]. 中国化工贸易, 2019, 11(29): 81.[3] 孙进, 郭蓉, 杨成敏,等. 加氢催化剂失活因素与再生活性研究[J]. 石油炼制与化工, 2017, 48(5): 43-47.[4] Shi Junjun, Guan Jianyu, Guo Dawei, et al. Nitrogen Chemistry and Coke Transformation of FCC Coked Catalyst during the Regeneration Process[J]. Scientific Reports, 2016, 6(1): 27309.[5] 张雪静, 徐广通, 郑爱国. FCC催化剂上积炭组成及形态分析[J]. 石油学报(石油加工), 2012, 28(1): 60-64.[6] Tsuyoshi Yamamoto, Takuya Kuwahara, Koichi Nakaso, et al. Kinetic study of fuel NO formation from pyrrole type nitrogen[J]. Fuel, 2012, 93(1): 213-220.[7] Lu Tian, Chen Feiwu. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.[8] Lu Tian, Chen Feiwu. Bond Order Analysis Based on the Laplacian of Electron Density in Fuzzy Overlap Space[J]. Journal of Physical Chemistry A, 2013, 117(14): 3100-3108.[9] JE Johnsson. Formation and reduction of nitrogen oxides in fluidized-bed combustion[J]. Fuel, 1994, 73(9): 1398-1415.[10] 孟韵, 居学海, 肖鹤鸣. 密度泛函理论研究煤中有机氮的热解机理[J]. 南京理工大学学报(自然科学版), 2008, 32(2): 241-247.[11] Luan Hui, Lin Jueying, Xiu Guangli, et al. Study on compositions of FCC flue gas and pollutant precursors from FCC catalysts[J]. Chemosphere, 2020, 245: 125528.[12] 车德福. 煤氮热变迁与氮氧化物生成[M]. 西安:西安交通大学出版社, 2013: 77-132.[13] 谭厚章, 廖晓伟, 赵科,等. 傅里叶红外光谱法对煤中吡咯型氮的热解规律研究[J]. 动力工程, 2004, 24(1): 121-124.[14] AnGayle K. Vasiliou, Hui Hu, Thomas W. Cowell, et al. Modeling Oil Shale Pyrolysis: High-Temperature Unimolecular Decomposition Pathways for Thiophene[J]. Journal of Physical Chemistry A, 2017, 121(40): 7655-7666.[15] Guo Huiqing, Wang Xinlong, Liu Fenrong, et al. Sulfur release and its transformation behavior of sulfur-containing model com-pounds during pyrolysis under CO2 atmosphere[J]. Fuel, 2017, 206: 716-723.[16] Bao Binbin, Liu Jinglei, Xu Hong, et al. Effect of selective oxidation and sulphur/phosphorus-containing compounds on coking behaviour during light naphtha thermal cracking[J]. The Canadian Journal of Chemical Engineering, 2017, 95(8): 1480-1488.[17] 冯炜, 高红凤, 刘婷,等. 吡咯和吡啶燃烧的反应分子动力学模拟[J]. 石油学报(石油加工), 2019, 35(6): 1130-1137.[18] 刘海明, 张军营, 郑楚光,等. 煤中吡咯型和吡啶型氮热解稳定性研究[J]. 华中科技大学学报(自然科学版), 2004, 32(11): 13-15.[19] Yuan Shuai, Li Jun, Chen Xueli, et al. Mechanisms of NH3 and HCN formation during rapid pyrolysis of pyridinic nitrogen containing substances[J]. Journal of Fuel Chemistry & Technology, 2011, 39(6): 15-20.[20] Li Pin-Wei, Chyang Chien-Song, Ni Hung-Wen. An experimental study of the effect of nitrogen origin on the formation and reduction of NOx in fluidized-bed combustion[J]. Energy, 2018, 154: 319-327.[21] 于道永, 徐海, 阙国河 于道永,等. 催化裂化催化剂再生过程中的氮化学进展[J]. 化工进展, 2009, 28(12): 2146-2159. |