PETROLEUM PROCESSING AND PETROCHEMICALS ›› 2024, Vol. 55 ›› Issue (3): 154-161.
Previous Articles Next Articles
Received:
2023-08-15
Revised:
2023-11-07
Online:
2024-03-12
Published:
2024-02-28
[1]王红秋.我国炼油向化工转型现状与思考[J].化工进展, 2020, 39(11):4401-4407 [2]宋国良,肖寒,柏洪浩,等.分子筛与无定形硅铝的比例对柴油加氢裂化催化剂性能的影响[J].石油炼制与化工, 2021, 52(02):39-45 [3]师希娥,张晔,戴立益,等.无定形硅铝和-催化裂化性能的比较研究[J].化学学报, 2003, 61(9):1388-1392 [4]李环宇,马辉,邢爱华,等.加氢裂化催化剂载体无定形硅铝制备研究进展[J].天然气化工化学与化工, 2021, 46(02):15-20 [5]Busca G.Catalytic materials based on silica and alumina: Structural features and generation of surface acidity[J]. Progress in Materials Science, 2019, 104: 215-249. [6]Narula C K, Rokosz M, Allard L F, et al.Sol-Gel processed silica-alumina materials for diesel engine emission reduction catalysts[J].Langmuir, 2000, 16(8):3818-3822 [7]Xu B, Sievers C, Lercher J A, et al.Strong Br?nsted acidity in amorphous silica-aluminas[J].The Journal of Physical Chemistry C, 2007, 111(32):12075-12079 [8]Serp P, Kalck P, Feurer R.Chemical vapor deposition methods for the controlled preparation of supported catalytic materials[J].Chemical Reviews, 2002, 102(9):3085-3128 [9]Wang Z, Jiang Y, Baiker A, et al.Efficient acid-catalyzed conversion of phenylglyoxal to mandelates on flame-derived silicaalumina[J].ACS Catalysis, 2013, 3(7):1573-1577 [10]Yabuki M, Takahashi R, Sato S, et al.Silica-alumina catalysts prepared in sol-gel process of TEOS with organic additives[J].Physical Chemistry Chemical Physics, 2002, 4(19):4830-4837 [11]Li T, Zhang L, Tao Z, et al.Synthesis and characterization of amorphous silica-alumina with enhanced acidity and its application in hydro-isomerization/cracking[J]. Fuel, 2020, 279: 118487. [12]Li T, Tao Z, Zhang L, et al.Facile and cost-effective synthesis of acidity-enhanced amorphous silica-alumina for high-performance isomerization[J]. Journal of Solid State Chemistry, 2021, 300: 122249. [13]Silica-Aluminas Mixed Metal Oxides Hydrotalcites [EB/OL].https://www.sasolgermany.de/alumina, 2023-04-10. [14]杨清河,曾双亲,刘锋,等.加氢催化剂全生命周期绿色供应链技术的研发[J].石油炼制与化工, 2022, 53(3):1-8 [15]Xu B, Yang Y, Xu Y, et al.Synthesis and characterization of mesoporous Si-modified alumina with high thermal stability[J]. Microporous and Mesoporous Materials, 2017, 238: 84-89. [16]Ishihara A, Dumeignil F, Wang D, et al.Investigation of sulfur behavior on CoMo-based HDS catalysts supported on high surface area TiO2 by 35S radioisotope tracer method[J]. Applied Catalysis A: General, 2005, 292: 50-60. [17]孙晓艳,樊宏飞,赵崇庆.一种碳化法制备无定形硅铝的方法[P]. 中国专利:200410050785.X,2006-05-03. [18]Qi T, Kang Y, Arowo M, et al.Production of ZSM-5 zeolites using rotating packed bed: Impact mechanism and process synthesis studies[J]. Chemical Engineering Science, 2021, 244: 116794. [19]Bao J, Yang Q, Zeng S, et al.Synthesis of amorphous silica-alumina with enhanced specific surface area and acidity by pH-swing method and its catalytic activity in cumene cracking[J]. Microporous and Mesoporous Materials, 2022, 337: 111897. [20]杜君臣,张爱敏,郭律,等.硅源对无定形硅铝物化性能的影响[J]. 工业催化,2014,(11): 831-835. [21]Caillot M, Chaumonnot A, Digne M, et al.Synthesis of amorphous aluminosilicates by grafting: Tuning the building and final structure of the deposit by selecting the appropriate synthesis conditions[J]. Microporous and Mesoporous Materials, 2014, 185: 179-189. [22]Katada N, Toyama T, Niwa M.Mechanism of growth of silica monolayer and generation of acidity by chemical vapor deposition of tetramethoxysilane on alumina[J].The Journal of Physical Chemistry, 1994, 98(31):7647-7652 [23]Katada N, Fukui H, Niwa M.A continuous-flow method for chemical vapor deposition of tetramethoxysilane on γ-Alumina to prepare silica monolayer solid acid catalyst[J].Journal of Chemical Engineering of Japan, 2001, 34(3):306-311 [24]邓建科,秦烟莱.碳化共胶沉淀方式对硅铝胶载体孔结构的影响[Z]. 全国铝工业新技术推广暨节能减排经验交流会论文集. 杭州. 2009: 209-210. [25]杜艳泽,戴宝华,王凤来,等.碳化法制备无定形硅铝孔结构影响因素研究[J].工业催化, 2006, 14(9):64-68 [26]Huang J, van Vegten N, Jiang Y, et al.Increasing the Br?nsted acidity of flame-derived silica/alumina up to zeolitic strength[J]. 2010, 49(42): 7776-7781. [27]Wang Z, Jiang Y, Jin F, et al.Strongly enhanced acidity and activity of amorphous silica-alumina by formation of pentacoordinated AlV species[J]. Journal of Catalysis, 2019, 372: 1-7. [28]Rankin A G M, Webb P B, Dawson D M, et al.Determining the surface structure of silicated alumina catalysts via isotopic enrichment and dynamic nuclear polarization surface-enhanced NMR spectroscopy[J].The Journal of Physical Chemistry C, 2017, 121(41):22977-22984 [29]亢丽娜,郭江渊,张鸿喜,等.催化剂在水相加氢体系中的活性及稳定性研究[J].分子催化, 2014, 28(2):119-125 [30] 龙湘云,刘清河,刘学芬,等.一种拟薄水铝石与含硅化合物的组合物和由其制备的氧化硅-氧化铝[P]. 中国专利:201110039560.4,2013-06-26. [31]Pieta I S, Ishaq M, Wells R P K, et al.Quantitative determination of acid sites on silica-alumina[J].Applied Catalysis A: General, 2010, 390(1):127-134 [32]Caillot M, Chaumonnot A, Digne M, et al.The variety of Br?nsted acid sites in amorphous aluminosilicates and zeolites[J]. Journal of Catalysis, 2014, 316: 47-56. [33]Chizallet C, Raybaud P.Pseudo-bridging silanols as versatile Br?nsted acid sites of amorphous aluminosilicate surfaces[J].Angewandte Chemie, 2009, 48(16):2891-2893 [34]Omegna A, van Bokhoven J A, Prins R.Flexible aluminum coordination in alumino-silicatesStructure of zeolite H-USY and amorphous silica-alumina[J].The Journal of Physical Chemistry B, 2003, 107(34):8854-8860 [35]Chizallet C, Raybaud P.Acidity of amorphous silica-alumina: From coordination promotion of Lewis sites to proton transfer[J].ChemPhysChem, 2010, 11(1):105-108 [36]Wang Z, Jiang Y, Lafon O, et al.Br?nsted acid sites based on penta-coordinated aluminum species[J].Nature Communications, 2016, 7(1):13820- [37]Valla M, Rossini A J, Caillot M, et al.Atomic description of the interface between silica and alumina in aluminosilicates through dynamic nuclear polarization surface-enhanced NMR spectroscopy and first-principles calculations[J].Journal of the American Chemical Society, 2015, 137(33):10710-10719 [38]Hensen E J M, Poduval D G, Degirmenci V, et al.Acidity characterization of amorphous silica-alumina[J].The Journal of Physical Chemistry C, 2012, 116(40):21416-21429 [39]唐博合金,王艾芬,江政烨,等.含硅氧化铝催化剂的制备及性质[J].上海工程技术大学学报, 2007, 21(4):326-330 [40]王敏朵,曾双亲,贾燕子,等.制备方法对含硅氧化铝载体性质的影响[J].化工进展, 2017, 36(z1):235-240 [41]董松涛.加氢裂化催化剂选择性的研究[D]. 中国石化石油化工科学研究院, 2001. [42]董松涛,李明丰,聂红,等.多孔载体及制备方法和应用以及催化剂和加氢裂化方法[P]. 中国专利:201110297619.X,2015-06-17. [43]Li T, Tao Z, Hu C, et al.Br?nsted acidity of amorphous silica-aluminas for hydrocracking of Fischer-Tropsch wax into diesel fractions[J]. Applied Catalysis A: General, 2022, 630: 118439. [44]Larmier K, Chizallet C, Maury S, et al.Isopropanol dehydration on amorphous silica-alumina: Synergy of Br?nsted and Lewis acidities at Pseudo-bridging silanols[J]. 2017, 56(1): 230-234. [45]Xu J, Wang R, Zhang Y, et al.Identification of the structure of Ni active sites for ethylene oligomerization on an amorphous silica-alumina supported nickel catalyst[J].Chinese Journal of Catalysis, 2021, 42(12):2181-2188 [46]Wang Z, Buechel R, Jiang Y, et al.Engineering the distinct structure interface of subnano-alumina domains on silica for acidic amorphous silica-alumina toward biorefining[J].JACS Au, 2021, 1(3):262-271 [47]Maity A, Chaudhari S, Titman J J, et al.Catalytic nanosponges of acidic aluminosilicates for plastic degradation and CO2 to fuel conversion[J].Nature Communications, 2020, 11(1):3828- [48]Suganuma S, Arita K, Nakano F, et al.Adsorption kinetics in removal of basic nitrogen-containing compounds from practical heavy oils by amorphous silica-alumina[J]. Fuel, 2020, 266: 117055. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||