[1] Plastics Europe, Plastics-the Facts 2018: An analysis of European plastics production, demand and waste data [R]. Brussels, Belgium:Plastics Europe, 2019.
[2] Laurent Lebreton, Anthony Andrady. Future scenarios of global plastic waste generation and disposal [J]. Palgrave Communications, 2019, 5: 6-16.
[3] Al-Salem S M, Lettieri P, Baeyens J. The valorization of plastic solid waste (PSW) by primary to quaternary routes: From reuse to energy and chemicals [J]. Progress in Energy & Combustion Science, 2010, 36(1): 103-129.
[4] M M Harussani, S M Sapuan, Umer Rashid, et al. Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic [J]. Science of the Total Environment, 2022, 803: 149911-149926.
[5] Bermingham F, Tan S L. Coronavirus: China’s mask-making juggernaut cranks into gear, sparking fears of over-reliance on world’s workshop [N]. South China Morning Post, 2020-3-12.
[6] Yayun Zhang, Dengle Duan, Hanwu Lei, et al. Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons [J]. Applied Energy, 2019, 251: 113337-113353.
[7] David T Tudor, Allan T Williams. The effectiveness of legislative and voluntary strategies to prevent ocean plastic pollution: Lessons from the UK and South Pacific [J]. Marine Pollution Bulletin, 2021, 172: 112778-112796.
[8] De Frond Hannah L, Van Sebille Erik, Parnis J Mark, et al. Estimating the mass of chemicals associated with ocean plastic pollution to inform mitigation efforts [J]. Integrated Environmental Assessment and Management, 2019, 15(4): 596-606.
[9] Maocai Shen, Wei Huang, Ming Chen, et al. (Micro) plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change [J]. Journal of Cleaner Production, 2020, 254: 120138-120150.
[10] Gerardo Martínez-Narro, Nicholas J Royston, Katie L Billsborough, et al. Kinetic modelling of mixed plastic waste pyrolysis [J]. Chemical Thermodynamics and Thermal Analysis, 2023, 9: 100105-100119.
[11] Machado A A D, Lau C W, Till J, et al. Impacts of microplastics on the soil biophysical environment [J]. Environmental Science & Technology, 2018, 52(17): 9656-9665.
[12] Chenqian Wang, Liuwei Wang, Yong Sik Ok, et al. Soil plastisphere: exploration methods, influencing factors, and ecological insights [J]. Journal of Hazardous Materials, 2022, 430: 128503-128518.
[13] Tran H N, You S-J, Hosseini-Bandegharaei A, et al. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review [J]. Water Research, 2017, 120: 88-116.
[14] Tsakona M , I Rucevska. Plastic waste background report [R]. Geneva (Switzerland): Basel convention, 2020.
[15] Yujie Peng, Yunpu Wang, Linyao Ke, et al. A review on catalytic pyrolysis of plastic wastes to high-value products [J]. Energy Conversion and Management, 2022, 254: 115243-115258.
[16] F Faisal, MG Rasul, MI Jahirul, et al. Pyrolytic conversion of waste plastics to energy products: A review on yields, properties, and production costs [J]. Science of the Total Environment, 2023, 861: 160721-160742.
[17] U Hujuri, AK Ghoshal, S Gumma. Modeling pyrolysis kinetics of plastic mixtures [J]. Polymer Degradation and Stability, 2008, 93: 1832-1837.
[18] P Kostetskyy, LJ Broadbelt. Progress in Modeling of Biomass Fast Pyrolysis: a Review [J]. Energy & Fuels, 2020, 34: 15195-15216.
[19] 韩斌. 聚氯乙烯等塑料废弃物热解特性及动力学研究[D]. 天津: 天津大学, 2012.
[20] Isam Janajreh, Idowu Adeyemi, Sherien Elagroudy. Gasification feasibility of polyethylene, polypropylene, polystyrene waste and their mixture: Experimental studies and modeling [J]. Sustainable Energy Technologies and Assessments, 2020, 39: 100684-100696.
[21] Marco Maniscalco, Fabiola La Paglia, Pasquale Iannotta, et al. Slow pyrolysis of an LDPE/PP mixture: Kinetics and process performance [J]. Journal of the Energy Institute, 2021, 96: 234-241.
[22] Tilun Shan, Huiguang Bian, Kongshuo Wang, et al. Study on pyrolysis characteristics and kinetics of mixed waste plastics under different atmospheres [J]. Thermochimica Acta, 2023,722: 179467-179476.
[23] N Miskolczi, L Bartha, A Angyal. Pyrolysis of Polyvinyl Chloride (PVC)- Containing Mixed Plastic Wastes for Recovery of Hydrocarbons [J]. Energy & Fuels, 2009, 23: 2743-2749.
[24] 栾晓玉. 基于物质流分析的中国塑料资源代谢[D]. 济南: 山东大学, 2020.
[25] 王道钰, 王德进, 钱家麟. 油页岩和生油岩热解动力学方程的数值计算[J]. 华东石油学院学报, 1985, 9(3): 92-99.
[26] Pavel Straka, Olga Bi?áková, Monika ?upová. Thermal conversion of polyolefins/ polystyrene ternary mixtures: Kinetics and pyrolysis on a laboratory and commercial scales [J]. Journal of Analytical and Applied Pyrolysis, 2017, 128: 196-207.
[27] Gerardo Martínez-Narro, Nicholas J Royston, Katie L Billsborough, et al. Kinetic modelling of mixed plastic waste pyrolysis [J]. Chemical Thermodynamics and Thermal Analysis, 2023, 9: 100105-100119.
[28] Seung-Soo Kim, Seungdo Kim. Pyrolysis characteristics of polystyrene and polypropylene in a stirred batch reactor [J]. Chemical Engineering Journal, 2004, 98: 53-60.
[29] Jinbao Huang, Xinsheng Li, Hanxian Meng, et al. Studies on pyrolysis mechanisms of syndiotactic polystyrene using DTF method [J]. Chemical Physics Letters, 2020, 747: 137334-137344.
[30] R Tuffi, S D Abramol, L M Cafiero. Thermal behavior and pyrolytic degradation kinetics of polymeric mixtures from waste packaging plastics [J]. Express Polymer Letters, 2018, 12(1): 82-99.
[31] R A Shanks, J Li, L Yu. Polypropylene–polyethylene blend morphology controlled by time–temperature–miscibility [J]. Polymer, 2000, 41: 2133-2139.
[32] Juniza Md Saad, Paul T Williams, Ye Shui Zhang, et al. Comparison of waste plastics pyrolysis under nitrogen and carbon dioxide atmospheres: A thermogravimetric and kinetic study [J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105135-105144. |