PETROLEUM PROCESSING AND PETROCHEMICALS ›› 2025, Vol. 56 ›› Issue (5): 105-116.
Previous Articles Next Articles
Received:
2024-11-12
Revised:
2025-02-25
Online:
2025-05-12
Published:
2025-04-14
[1]郭慕孙, 王永安, 金涌.流态化反应工程[J].化学工程, 1984,, 2:5-10[2]李洪钟, 郭慕孙.回眸与展望流态化科学与技术[J].化工学报, 2013, 64(1):52-62[3]Kwauk M,.Origins of the Fast Fluid Bed[J].Advances in Chemical Engineering: Academic Press,, 1994,, :1-37[4]郭慕孙, 李佑楚, 刘淑娟, 等.流态化研究的新进展[J].中国科学院院刊, 1990, 02(02):134-136[5]李佑楚, 陈丙瑜, 王凤鸣, 等.一快速流态化流动模型参数的关联[J].过程工程学报, 1980, 04(04):20-30[6]陈丙瑜, 李佑楚, 王凤鸣, 等.二快速流态化床形成的条件及其预测[J].过程工程学报, 1980, 04(04):30-38[7]王永生, 王凤鸣, 陈丙瑜, 等.三快速流态化床床层结构的测定[J].过程工程学报, 1980, 04(04):38-45[8]Kwauk M.Fluidization: idealized and bubbless, with applications[J]., 1992, :-[9]李静海.两相流多尺度作用能量最小模型[D]. 中国科学院化工冶金研究所, .,., 1987, :-[10]Li J, Kwauk M.Particle-fluid two-phase flow: the energy-minimization multi-scale method[J]., 1994., :-[11]Yang N, Wang W, Ge W, et al.Choosing structure-dependent drag coefficient in modeling gas-solid two-phase flow[J].China Particuology, 2003, 1(1):38-41[12]Dong W, Wang W, Li J.A multiscale mass transfer model for gas-solid riser flows: Part 1 -- Sub-grid model and simple tests[J].Chemical Engineering Science, 2008, 63(10):2798-2810[13]Dong W, Wang W, Li J.A multiscale mass transfer model for gas–solid riser flows: Part II—Sub-grid simulation of ozone decomposition[J].Chemical Engineering Science, 2008, 63(10):2811-2823[14]鲁波娜, 程从礼, 鲁维民, 等.基于多尺度模型的提升管反应历程数值模拟[J].化工学报, 2013, 64(6):1983-1992[15]Wang W, Lu B, Zhang N, et al.A review of multiscale CFD for gas–solid CFB modeling[J].International Journal of Multiphase Flow, 2010, 36(2):109-118[16]Lu B, Niu Y, Chen F, et al.Energy-minimization multiscale based mesoscale modeling and applications in gas-fluidized catalytic reactors[J].Reviews in Chemical Engineering, 2019, 35(8):879-915[17]Chen J, Cao H, Liu T: 9.Catalyst Regeneration in Fluid Catalytic Cracking, Kwauk M, editor,[J].Advances in Chemical Engineering: Academic Press, 1994, :389-419[18]Enos J L.Petroleum Progress and Profits: A History of Process Innovation[M]. Cambridge, Massachusetts: M.I.T. Press, ., 1962., :-., 1962, :-[19]Degnen W J, Nelly H M, Keith P C.USA.[20]Basu P.The story of fluid catalytic craking: the first " circulating fluid bed"[J].Circulating Fluidized Bed Technology, 1986, :1-19[21]Chambers J W.Flow characteristics of air-fine particle mixtures in vertical tubes[D]. Massachusetts Institute of Technology, ., 1939., :-., 1939, :-[22]Walker S W.Flow characteristics of fluid-fine particle mixtures[D]. Massachusetts Institute of Technology, ., 1940., :-., 1940, :-[23]Lewis W K, Gilliland E R, Bauer W C.Characteristics of Fluidized Particles[J].Industrial & Engineering Chemistry, 1949, 41(6):1104-1117[24]Bi H T.Transition from turbulent to fast fluidization[J].Chemical Engineering Communications, 2002, 189(7):942-958[25]Yerushalmi J, Cankurt N T.Further studies of the regimes of fluidization[J].Powder Technology, 1979, 24(2):187-205[26]陈丙瑜, 李佑楚, 王凤鸣, 等.快速流态化形成的条件及其预测[J].过程工程学报, 1980, 4:30-3[27]李静海, 欧阳洁, 高士秋, 等.颗粒流体复杂系统的多尺度模拟[J]., 2005, :-[28]编写组.追求卓越—郭慕孙传[M]. 中国科学技术出版社/上海交通大学出版社,., 2015, :-[29]Kwauk M.Fluidized Roasting of Oxidic Chinese Iron Ores[J].Scientia Sinica, 1979, XXII(11):1265-1291[30]郭慕孙, 戴殿卫.流态化冶金中的稀相传递过程 第二部分 稀相技术在换热中的应用[J].金属学报, 1964, 7(4):391-408[31]郭慕孙, 戴殿卫.流态化冶金中的稀相传递过程 第一部分 传递系数及系统压降作为选择稀相工艺过程的依据[J].金属学报, 1964, 7(03):263-280[32]Kwauk M.Particulate fluidization in chemical metallurgy[J].Scientia Sinica, 1973, XVI(8):407-428[33]李佑楚, 陈丙瑜, 王凤鸣, 等.快速流态化的流动[J].化工学报, 1979, :143-151[34]Li Y, Chen B Y, Wang F, et al.Rapid fluidization[J].International Chemical Engineering, 1981, 21(4):670-678[35]Li Y, Kwauk M:, Grace J R, Matsen J M,.The Dynamics of Fast Fluidization[J].Springer US, 1980,, :537-544[36]Kwauk M.[J].Advances in Chemical Engineering. Academic Press, 1994, :-[37]Kwauk M:.Fast Fluidization[J].Advances in Chemical Engineering: Academic Press, 1994, :-[38]李静海, 葛蔚, 王维, 等.:多尺度方法与过程模拟——回顾多尺度方法,展望虚拟过程工程, 李洪钟, editor, 过程工程, 北京: 科学出版社, [J].,[J]., 2010, :-[39]Li J, Ge W, Wang W, et al.Focusing on mesoscales: from the energy-minimization multiscale model to mesoscience[J].Current Opinion in Chemical Engineering,, 2016,, 13:10-23[40]许友好, 张久顺, 龙军.生产清洁汽油组分的催化裂化新工艺[J].石油炼制与化工, 2001, 31(8):1-5[41]程从礼.循环流化床能量最小多尺度环核模型[D]. 中国科学院过程工程研究所, ., 2001., :-., 2001, :-[42]中国石化集团高级技师燕山培训基地.催化裂化事故分析与预防[M]. 北京: 中国石化出版社, ., 2007, :-., 2007, :-[43]杨宁.非均匀气固两相流动的计算机模拟-多尺度方法与双流体模型的结合[D]. 中国科学院过程工程研究所, 2003.., 2003, :-[44]Yang N, Wang W, Ge W, et al.CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient[J].Chemical Engineering Journal, 2003, 96(1-3):71-80[45]Wang W, Li J.Simulation of gas–solid two-phase flow by a multi-scale CFD approach—of the EMMS model to the sub-grid level[J].Chemical Engineering Science, 2007, 62(1-2):208-231[46]Lu B, Wang W, Li J.Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows[J].Chemical Engineering Science, 2009, 64(15):3437-3447[47]Lu B, Zhang N, Wang W, et al.D full-loop simulation of an industrial-scale circulating fluidized-bed boiler[J].AIChE Journal, 2013, 59(4):1108-1117[48]Luo H, Lu B, Wang W, et al.A grid-independent EMMS/bubbling drag model for bubbling and turbulent fluidization[J].Chemical Engineering Journal, 2017,, 326::47-57[49]Bona L, Yan N, Feiguo C, et al.Energy-minimization multiscale based mesoscale modeling and applications in gas-fluidized catalytic reactors[J].Reviews in Chemical Engineering, 2019, 35(8):879-915[50]鲁波娜, 程从礼, 鲁维民, 等.基于多尺度模型的MIP提升管反应历程数值模拟.[J].化工学报., 2013, :1983-1992[51]Wang W, Lu B, Zhang N, et al.A review of multiscale CFD for gas-solid CFB modeling[J].International Journal of Multiphase Flow, 2010, 36(2):109-118[52]Lu B, Wang W, Li J.Eulerian simulation of gas–solid flows with particles of Geldart groups A,B and D using EMMS-based meso-scale model[J].Chemical Engineering Science, 2011, 66(20):4624-4635[53]Lu B, Wang W, Li J, et al.Multi-scale CFD simulation of gas–solid flow in MIP reactors with a structure-dependent drag model[J].Chemical Engineering Science, 2007, 62(18):5487-5494[54]Han C, Xu Y, Lu B, et al.Two-Phase and Three-Phase Modeling of an Industrial Fluidized Bed for Maximizing Iso-Paraffins[J].Chemie Ingenieur Technik, 2023, 95(1-2):97-106[55]Han C, Xu Y, Lu B, et al.Numerical exploration of the flow regime transition of a novel catalytic cracking reactor and operation mode analysis[J].Powder Technology, 2022,, 398::117137--[56]许友好, 鲁波娜, 何鸣元, 等.变径流化床反应器理论与实践[M]. 北京: 中国石化出版社, ., 2019., :-., 2019, :-[57]Youhao X, Bona L, Mingyuan H, et al.Diameter-transformed fluidized bed[M]. Springer, .,., 2020., :-, :-[58]Yang Z, Lu B, Wang W.Coupling Artificial Neural Network with EMMS drag for simulation of dense fluidized beds[J].Chemical Engineering Science, 2021, 246:117003--[59]Du C, Han C, Yang Z, et al.Multiscale CFD Simulation of an Industrial Diameter-Transformed Fluidized Bed Reactor with Artificial Neural Network Analysis of EMMS Drag Markers[J].Industrial & Engineering Chemistry Research, 2022, 61(24):8566-8580[60]Wu Y, Liu S, Xu Y, et al.Hydrodynamic Full-Loop Simulation of an Industrial Fluid Catalytic Cracking Fluidized Bed System with Mechanical Valves[J].Industrial & Engineering Chemistry Research, 2024, 63(7):3324-3335[61]Liu S, Xu F, Lu B, et al.Porous-media model based particle-resolved simulation of a fixed bed with olefin catalytic cracking reaction[J].Powder Technology,, 2024, 431:119099--[62]Youhao X, Yanfen Z, Wenjie Y, et al.Targeted Catalytic Cracking to Olefins (TCO): Reaction Mechanism,Production Scheme,and Process Perspectives[J].Engineering, 2023, 30(11):100-109[63]许友好, 左严芬, 白旭辉, 等.靶向生产低碳烯烃的催化裂化技术开发背景、开发思路和概念设计[J].石油炼制与化工, 2021, 52(08):1-11 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||