石油炼制与化工 ›› 2024, Vol. 55 ›› Issue (2): 52-63.
罗爽,王健健
收稿日期:
2023-10-10
修回日期:
2023-10-20
出版日期:
2024-02-12
发布日期:
2024-01-29
通讯作者:
王健健
E-mail:Wangjianjian@cqu.edu.cn
基金资助:
#br#
Received:
2023-10-10
Revised:
2023-10-20
Online:
2024-02-12
Published:
2024-01-29
Contact:
Jian-Jian WANG
E-mail:Wangjianjian@cqu.edu.cn
摘要: 生物质选择性转化制备二元醇是生物质高值化利用的重要路线之一,能够有效减少石油基路线存在的原料不可再生和环境污染等问题。围绕生物质及其衍生物(包括纤维素、葡萄糖和果糖)选择性转化制备乙二醇和丙二醇,系统总结了国内外研究进展,对催化剂结构类型、反应途径、反应机理、催化剂稳定性等进行了详细的介绍和分析,并对生物质催化定制二元醇的发展趋势进行了展望,以期为相关研究者提供参考。
罗爽 王健健. 生物质基二元醇催化定制过程钨基催化剂研究进展[J]. 石油炼制与化工, 2024, 55(2): 52-63.
[1]张执刚, 谢朝钢, 施至诚, 等.催化热裂解制取乙烯和丙烯的工艺研究[J].石油炼制与化工, 2001, 32(5):21-24 [2]钟孝湘, 张执刚, 黎仕克, 等.催化裂化多产液化气和柴油工艺技术的开发与应用[J].石油炼制与化工, 2001, 32(11):1-5 [3]Ryan Georgianna D, Mayfield S P.Exploiting diversity and synthetic biology for the production of algal biofuels[J].Nature, 2012, 488(7411):329-335 [4]吴巧妹, 杨启悦, 曾宪海, 等.纤维素基生物质催化转化制备二醇[J].化学进展, 2022, 34(10):2173-2189 [5]Zhang L Q, Qiu J R, Deng J H, et al.Efficient transformation of hemicellulosic biomass into sugar alcohols with non-precious and stable bimetallic support catalyst[J].Industrial Crops and Products, 2023, 194:116378- [6]Zhang L Q, Qiu J R, Tang X, et al.Efficient synthesis of sugar alcohols over a synergistic and sustainable catalyst[J].Chinese Journal of Chemistry, 2021, 39(9):2467-2476 [7]Zangoei S, Salehnia N, Khodaparast Mashhadi M.A comparative study on the effect of alternative and fossil energy consumption on economic growth and foreign direct investment in selected countries using SUR approach[J].Environmental Science and Pollution Research, 2021, 28(16):19799-19809 [8]Ma J L, Liu K N, Yang X P, et al.Recent advances and challenges in photoreforming of biomass-derived feedstocks into hydrogen,biofuels,or chemicals by using functional carbon nitride photocatalysts[J].ChemSusChem, 2021, 14(22):4903-4922 [9]Li W X, Xiao W Z, Yang Y Q, et al.Insights into bamboo delignification with acidic deep eutectic solvents pretreatment for enhanced lignin fractionation and valorization[J].Industrial Crops and Products, 2021, 170:113692- [10]Kong G, Zhang X, Wang K J, et al.Coupling biomass gasification and inline co-steam reforming: Synergistic effect on promotion of hydrogen production and tar removal[J].Fuel Processing Technology, 2023, 243:107689- [11]Jiménez-Morales I, Moreno-Recio M, Santamaría-González J, et al.Production of 5-hydroxymethylfurfural from glucose using aluminium doped MCM-41 silica as acid catalyst[J].Applied Catalysis B: Environmental, 2015, 164:70-76 [12]Zhang X Y, Gao B, Zhao S N, et al.Optimization of a “coal-like” pelletization technique based on the sustainable biomass fuel of hydrothermal carbonization of wheat straw[J].Journal of Cleaner Production, 2020, 242:118426- [13]Ayesha Khan, Vaishakh Nair, Juan Carlos Colmenares R G.Lignin?based composite materials for photocatalysis and photovoltaics[J].Nature, 1972, 237(5349):54-54 [14]Eschenbacher A, Saraeian A, Jensen P A, et al.Deoxygenation of wheat straw fast pyrolysis vapors over Na-Al2O3 catalyst for production of bio-oil with low acidity[J].Chemical Engineering Journal, 2020, 394:124878- [15]Qin K, Lin W G, Jensen P A, et al.High-temperature entrained flow gasification of biomass[J].Fuel, 2012, 93:589-600 [16]Elliott D C, Biller P, Ross A B, et al.Hydrothermal liquefaction of biomass: Developments from batch to continuous process[J].Bioresource Technology, 2015, 178:147-156 [17]Dabros T M H, Stummann M Z, Hoj M, et al.Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis[J].Progress in Energy and Combustion Science, 2018, 68:268-309 [18]Hoang A T, Ong H C, Fattah I M R, et al.Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability[J].Fuel Processing Technology, 2021, 223:106997- [19]Resende F L P.Recent advances on fast hydropyrolysis of biomass[J].Catalysis Today, 2016, 269:148-155 [20]Stummann M Z, H?j M, Davidsen B, et al.Effect of the catalyst in fluid bed catalytic hydropyrolysis[J].Catalysis Today, 2020, 355:96-109 [21]Stummann M Z, H?j M, Gabrielsen J, et al.A perspective on catalytic hydropyrolysis of biomass[J].Renewable and Sustainable Energy Reviews, 2021, 143:110960- [22]Isikgor F H, Becer C R.Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers[J].Polymer Chemistry, 2015, 6(25):4497-4559 [23]岳桂淑, 吴红军, 王宝辉, 等.甘油催化氢解制备二元醇的研究进展[J].现代化工, 2010, 30(12):16-22 [24]Zheng M Y, Pang J F, Sun R Y, et al.Selectivity control for cellulose to diols: dancing on eggs[J].ACS Catalysis, 2017, 7(3):1939-1954 [25]Ji N, Zhang T, Zheng M Y, et al.Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J].Angewandte Chemie, 2008, 120(44):8638-8641 [26]Beine A K, Krüger A J D, Artz J, et al.Selective production of glycols from xylitol over Ru on covalent triazine frameworks-suppressing decarbonylation reactions[J].Green Chemistry, 2018, 20(6):1316-1322 [27]Li C, Xu G, Li K, et al.A weakly basic CoCeO: X catalytic system for one-pot conversion of cellulose to diols: Kungfu on eggs[J].Chemical Communications, 2019, 55(53):7663-7666 [28]Wu Y S, Wang H T, Peng J B, et al.Advances in catalytic valorization of cellulose into value-added chemicals and fuels over heterogeneous catalysts[J].Catalysis Today, 2023, 408:92-110 [29]Liu C W, Zhang C H, Sun S K, et al.Effect of WOx on bifunctional Pd-WOxAl2O3 catalysts for the selective hydrogenolysis of glucose to 1,2-propanediol[J].ACS Catalysis, 2015, 5(8):4612-4623 [30]Liu C W, Zhang C H, Hao S L, et al.WOx modified Cu/Al2O3 as a high-performance catalyst for the hydrogenolysis of glucose to 1, 2-propanediol[J].Catalysis Today, 2016, 261:116-127 [31]Lv M X, Xin Q H, Yin D F, et al.Magnetically recoverable bifunctional catalysts for the conversion of cellulose to 1,2-propylene glycol[J].ACS Sustainable Chemistry and Engineering, 2020, 8(9):3617-3625 [32]Ji J C, Xu Y, Liu Y, et al.A nanosheet Ru/WO3 catalyst for efficient conversion of glucose to butanediol[J].Catalysis Communications, 2020, 144:106074- [33]Luo S, Li J W, Ran J S, et al.Significant promotion of MgOy in bifunctional Pt-WOx-MgOy catalysts for the chemoselective conversion of glucose to lower polyols[J].Catalysis Communications, 2023, 175:106614- [34]Liu Y, Liu Y L, Wu Q, et al.Catalytic conversion of glucose into lower diols over highly dispersed SiO2-supported Ru-W[J].Catalysis Communications, 2019, 129:105731- [35]Liu Y, Liu Y L, Zhang Y.The synergistic effects of Ru and WOx for aqueous-phase hydrogenation of glucose to lower diols[J].Applied Catalysis B: Environmental, 2019, 242:100-108 [36]Xin Q H, Yu S T, Jiang L, et al.Bifunctional catalyst with a yolk-shell structure catalyzes glucose to produce ethylene glycol[J].Journal of Physical Chemistry C, 2021, 125(12):6632-6642 [37]Cao Y L, Wang J W, Kang M Q, et al.Catalytic conversion of glucose and cellobiose to ethylene glycol over Ni-WO3SBA-15 catalysts[J].RSC Advances, 2015, 5(110):90904-90912 [38]Zhang J Y, Yang X F, Hou B L, et al.Comparison of cellobiose and glucose transformation to ethylene glycol[J].Chinese Journal of Catalysis, 2014, 35(11):1811-1817 [39]Zhang Jun Ying, Hou Bao Lin, Wang Ai Qin, Li Zhen Lei, Wan Hua Z T.Kinetic study of the competitive hydrogenation of glycolaldehyde and glucose on RuC with or without AMT[J].AIChE Journal, 2012, 59(4):215-228 [40]Cao Y L, Wang J W, Kang M Q, et al.Efficient synthesis of ethylene glycol from cellulose over Ni-WO3/SBA-15 catalysts[J].Journal of Molecular Catalysis A: Chemical, 2014, 381:46-53 [41]Zhou L K, Wang A Q, Li C Z, et al.Selective production of 1,2-propylene glycol from Jerusalem artichoke tuber using Ni-W2CAC catalysts[J].ChemSusChem, 2012, 5(5):932-938 [42]Zhou C H, Xia X, Lin C X, et al.Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels[J].Chemical Society Reviews, 2011, 40(11):5588-5617 [43]Yabushita M, Kobayashi H, Fukuoka A.Catalytic transformation of cellulose into platform chemicals[J].Applied Catalysis B: Environmental, 2014, 145:1-9 [44]Park J, Mushtaq U, Sugiarto J R, et al.Total chemocatalytic cascade conversion of lignocellulosic biomass into biochemicals[J].Applied Catalysis B: Environmental, 2022, 310:121280- [45]Fukuoka A, Dhepe P L.Catalytic conversion of cellulose into sugar alcohols[J].Angewandte Chemie - International Edition, 2006, 45(31):5161-5163 [46]Luo C, Wang S, Liu H C.Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water[J].Angewandte Chemie - International Edition, 2007, 46(40):7636-7639 [47]Wang X C, Meng L Q, Wu F, et al.Efficient conversion of microcrystalline cellulose to 1,2-alkanediols over supported Ni catalysts[J].Green Chemistry, 2012, 14(3):758-765 [48]Lucas M, Fabi?ovicová K, Claus P.Hydrothermally stable ruthenium–zirconium–tungsten catalyst for cellulose hydrogenolysis to polyols[J].ChemCatChem, 2018, 10(3):612-618 [49]Ribeiro L S, órf?o J, De Melo órf?o J J, et al.Hydrolytic hydrogenation of cellulose to ethylene glycol over carbon nanotubes supported Ru-W bimetallic catalysts[J].Cellulose, 2018, 25(4):2259-2272 [50]Mankar A R, Modak A, Pant K K.High yield synthesis of hexitols and ethylene glycol through one-pot hydrolytic hydrogenation of cellulose[J].Fuel Processing Technology, 2021, 218:106847- [51]Li C, Xu G Y, Wang C G, et al.One-pot chemocatalytic transformation of cellulose to ethanol over Ru-WOxHZSM-5[J].Green Chemistry, 2019, 21(9):2234-2239 [52]Xin Q, Jiang L, Yu S, et al.Bimetal oxide catalysts selectively catalyze cellulose to ethylene glycol[J].Journal of Physical Chemistry C, 2021, 125(33):18170-18179 [53]Pang J F, Zheng M Y, Li X S, et al.Unlock the compact structure of lignocellulosic biomass by mild ball milling for ethylene glycol production[J].ACS Sustainable Chemistry and Engineering, 2019, 7(1):679-687 [54]Zhang K, Yang G H, Lyu G J, et al.One-pot solvothermal synthesis of graphene nanocomposites for catalytic conversion of cellulose to ethylene glycol[J].ACS Sustainable Chemistry and Engineering, 2019, 7(13):11110-11117 [55]Li N X, Zheng Y, Wei L F, et al.Metal nanoparticles supported on WO3 nanosheets for highly selective hydrogenolysis of cellulose to ethylene glycol[J].Green Chemistry, 2017, 19(3):682-691 [56]Zheng M Y, Wang A Q, Ji N, et al.Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J].ChemSusChem, 2010, 3(1):63-66 [57]Xiao Z Q, Wang X L, Yang Q Q, et al.Fabrication of immobilized nickel nanoclusters decorated by CxNy species for cellulose conversion to C2, 3 oxygenated compounds: Rational design via typical C- and N-sources[J].Journal of Energy Chemistry, 2020, 50:25-36 [58]Gu M Y, Shen Z, Yang L, et al.Reaction route selection for cellulose hydrogenolysis into C2C3 glycols by ZnO-modified Ni-Wβ-zeolite catalysts[J].Scientific Reports, 2019, 9(1):1-10 [59]Yu J, Liang J Z, Chen X P, et al.Synergistic effect of NiWCu on MgAl2O4 for one-pot hydrogenolysis of cellulose to ethylene glycol at a low H2 pressure[J].ACS Omega, 2021, 6(17):11650-11659 [60]Xiao Z Q, Zhang Q, Chen T T, et al.Heterobimetallic catalysis for lignocellulose to ethylene glycol on nickel-tungsten catalysts: Influenced by hydroxy groups[J].Fuel, 2018, 230:332-343 [61]Xin H, Wang H, Li S, et al.Efficient production of ethylene glycol from cellulose over Co@C catalysts combined with tungstic acid[J].Sustainable Energy and Fuels, 2022, 6(10):2602-2612 [62]Chu D W, Zhao C.Reduced oxygen-deficient CuWO4 with Ni catalyzed selective hydrogenolysis of cellulose to ethylene glycol[J].Catalysis Today, 2020, 351:125-132 [63]Li N X, Liu X, Zhou J C, et al.Enhanced NiWTi catalyst stability from Ti-O-W linkage for effective conversion of cellulose into ethylene glycol[J].ACS Sustainable Chemistry and Engineering, 2020, 8(26):9650-9659 [64]Zhang Y H, Wang A Q, Zhang T.A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol[J].Chemical Communications, 2010, 46(6):862-864 [65]Hamdy M S, Eissa M A, Keshk S M A S.New catalyst with multiple active sites for selective hydrogenolysis of cellulose to ethylene glycol[J].Green Chemistry, 2017, 19(21):5144-5151 [66]Sreekantan S, Arunima Kirali A, Marimuthu B.Enhanced one-pot selective conversion of cellulose to ethylene glycol over NaZSM-5 supported metal catalysts[J].New Journal of Chemistry, 2021, 45(41):19244-19254 [67]Wang H Y, Xin H S, Cai C L, et al.Selective C3-C4 keto-alcohol production from cellulose hydrogenolysis over Ni-WOxC catalysts[J].ACS Catalysis, 2020, 10(18):10646-10660 [68]Chai J C, Zhu S H, Cen Y L, et al.Effect of tungsten surface density of WO3-ZrO2 on its catalytic performance in hydrogenolysis of cellulose to ethylene glycol[J].RSC Advances, 2017, 7(14):8567-8574 [69]Sullivan M M, Bhan A.Acetone hydrodeoxygenation over bifunctional metallic-acidic molybdenum carbide catalysts[J].ACS Catalysis, 2016, 6(2):1145-1152 [70]Xiao T C, Wang H T, York A P E, et al.Preparation of nickel-tungsten bimetallic carbide catalysts[J].Journal of Catalysis, 2002, 209(2):318-330 [71]Suresh C, Santhanaraj D, Gurulakshmi M, et al.Mo-NiAl-SBA-15 (Sulfide) catalysts for hydrodenitrogenation: Effect of SiAl ratio on catalytic activity[J].ACS Catalysis, 2012, 2(1):127-134 |
[1] | 王璐琳 刘会贞 韩布兴. 单原子催化剂催化生物质衍生物选择性加氢的研究进展[J]. 石油炼制与化工, 2024, 55(1): 52-61. |
[2] | 储昊东 冯心强 宋建婷 李梦迪 申春 谭天伟. 生物基对二甲苯:低廉木质纤维素通往绿色聚酯的桥梁[J]. 石油炼制与化工, 2024, 55(1): 28-41. |
[3] | 闫瑞 赵杰 陶志平 杨鹤 贾丹丹 伏朝林 朱忠朋 郑伟平. Ni-Nb2O5/γ-Al2O3催化1,5-双-(四氢呋喃基)-3-戊酮加氢脱氧制备长链烷烃的研究[J]. 石油炼制与化工, 2023, 54(8): 67-73. |
[4] | 舒亦桥 陶志平 王俊 郭莘 李娜. 汽油特征组分的自燃特性和火焰传播速度[J]. 石油炼制与化工, 2023, 54(11): 76-85. |
[5] | 周子淇 马晟焱 张东培 史会兵 严文娟 金鑫. 生物质基乙醇酸催化合成进展[J]. 石油炼制与化工, 2023, 54(11): 131-137. |
[6] | 蔡立乐 聂红 吴昊 于博 解增忠 李娜 渠红亮. 生物质喷气燃料可持续性及生命周期碳足迹评价研究[J]. 石油炼制与化工, 2023, 54(10): 110-116. |
[7] | 张君 李蕊 陈奇 王屯钰. 生物质焦的制备及VOCs吸附性能研究[J]. 石油炼制与化工, 2022, 53(6): 128-131. |
[8] | 何斌 唐晓东 秦光富 李晶晶. Fe2O3/Al2O3催化生物质裂解耦合稠油改质过程研究[J]. 石油炼制与化工, 2022, 53(4): 30-37. |
[9] | 吴玉超 史军军 王辉国 达志坚 戴厚良. 炼化企业在“双碳”背景下的技术探讨[J]. 石油炼制与化工, 2022, 53(1): 1-6. |
[10] | 舒玉美 史成香 潘伦 张香文 邹吉军. 生物质基喷气燃料的生产及应用进展[J]. 石油炼制与化工, 2021, 52(10): 88-93. |
[11] | 胡见波 杜泽学. 木粉在超临界甲醇中的液化研究[J]. 石油炼制与化工, 2017, 48(9): 36-39. |
[12] | 高俊锋 汪海年 尤占平 雷勇. 路用生物沥青及混合料性能研究[J]. , 2017, 48(10): 46-51. |
[13] | 陶志平. 替代喷气燃料的进展及我国发展的建议[J]. 石油炼制与化工, 2011, 42(7): 91-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||