石油炼制与化工 ›› 2024, Vol. 55 ›› Issue (2): 91-100.
黄春燕,燕思吟,赖芳,葛圆圆
收稿日期:
2023-10-13
修回日期:
2023-11-10
出版日期:
2024-02-12
发布日期:
2024-01-29
通讯作者:
葛圆圆
E-mail:geyy@gxu.edu.cn
基金资助:
Received:
2023-10-13
Revised:
2023-11-10
Online:
2024-02-12
Published:
2024-01-29
摘要: 类芬顿催化膜在处理废水中污染物方面具有明显的优势,广泛应用于去除染料、油污、新型污染物等领域。阐述了常见的类芬顿催化膜类型(包括过渡金属基、炭基、复合型和其他新型催化膜等)及制备方法,并分析了类芬顿催化膜体系在处理水中有机污染物的膜过滤和氧化降解机理,综述了类芬顿催化膜在典型有机废水中的应用现状,提出了类芬顿催化膜水处理技术面临的挑战,有助于促进类芬顿催化膜在实际废水处理中的发展和应用。
黄春燕 燕思吟 赖芳 葛圆圆. 类芬顿催化膜的制备及其处理有机废水的研究进展[J]. 石油炼制与化工, 2024, 55(2): 91-100.
[1] Schwarzenbach R P, Escher B I, Fenner K, et al. The challenge of micropollutants in aquatic systems[J]. Science, 2006, 313(5790): 1072-1077.[2] Eliasson J. The rising pressure of global water shortages[J]. Nature, 2015, 517(7532): 6-6.[3] Alvarez P J J, Chan C K, Elimelech M, et al. Emerging opportunities for nanotechnology to enhance water security[J]. Nature nanotechnology, 2018, 13(8): 634-641.[4] Chen Y, Zhang G, Liu H, Qu J. Confining Free Radicals in Close Vicinity to Contaminants Enables Ultrafast Fenton-like Processes in the Interspacing of MoS2 Membranes. Angewandte Chemie International Edition 2019, 58(24): 8134-8138.[5] Tu?ar NN, Mau?ec D, Rangus M, Ar?on I, Mazaj M, Cotman M, Pintar A, Kau?i? V. Manganese Functionalized Silicate Nanoparticles as a Fenton-Type Catalyst for Water Purification by Advanced Oxidation Processes (AOP). Advanced Functional Materials 2012, 22(4): 820-826.[6] Iqbal A, ul Haq A, Cerron-Calle GA, Naqvi SAR, Westerhoff P, Garcia-Segura S. Green Synthesis of Flower-Shaped Copper Oxide and Nickel Oxide Nanoparticles via Capparis decidua Leaf Extract for Synergic Adsorption-Photocatalytic Degradation of Pesticides. Catalysts 2021, 11(7): 806.[7] S. Mofarah S, Schreck L, Cazorla C, Zheng X, Adabifiroozjaei E, Tsounis C, Scott J, Shahmiri R, Yao Y, Abbasi R, Wang Y, Arandiyan H, Sheppard L, Wong V, Doustkhah E, Koshy P, Sorrell CC. Highly catalytically active CeO2-x-based heterojunction nanostructures with mixed micro/meso-porous architectures. Nanoscale 2021, 13(14): 6764-6771.[8] Liu B, Song W, Wu H, Liu Z, Teng Y, Sun Y, Xu Y, Zheng H. Degradation of norfloxacin with peroxymonosulfate activated by nanoconfinement Co3O4@CNT nanocomposite. Chemical Engineering Journal 2020, 398: 125498.[9] Ma Q, Zhang Y, Zhu X, Chen B. Hollow multi-shelled Co3O4 as nanoreactors to activate peroxymonosulfate for highly effective degradation of Carbamazepine: A novel strategy to reduce nano-catalyst agglomeration. Journal of Hazardous Materials 2022, 427: 127890.[10] Rhadfi T, Piquemal JY, Sicard L, Herbst F, Briot E, Benedetti M, Atlamsani A. Polyol-made Mn3O4 nanocrystals as efficient Fenton-like catalysts. Applied Catalysis a-General 2010, 386(1-2): 132-139.[11] Yang Z, Qian J, Yu A, Pan B. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. Proceedings of the National Academy of Sciences 2019, 116(14): 6659-6664.[12] Hodges BC, Cates EL, Kim J-H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nature Nanotechnology 2018, 13(8): 642-650.[13] 周胜,吴勇.膜分离技术在化工废水处理中的研究与应用[J].炼油与化工,2023,34(04):10-14.[14] 许金燕. 基于外力作用的分离膜制备及其在解决Trade-off效应中的应用[D].杭州师范大学,2022.[15] Paredes L, Murgolo S, Dzinun H, Dzarfan Othman MH, Ismail AF, Carballa M, Mascolo G. Application of immobilized TiO2 on PVDF dual layer hollow fibre membrane to improve the photocatalytic removal of pharmaceuticals in different water matrices. Applied Catalysis B: Environmental 2019, 240: 9-18.[16] 冯勇,吴德礼,马鲁铭.铁氧化物催化类Fenton反应[J].化学进展,2013,25(07):1219-1228.[17] 马文萱. 过渡金属基助催化剂在催化领域的应用研究[D].济南大学,2022.[18] 王海鑫,吕宗祥,钟道旭等.过硫酸盐高级氧化技术活化机理的研究进展[J].西部皮革,2022,44(13):90-93.[19] 肖泽仪,孟佳欣,樊森清等.Co3S4/PES催化膜反应器氧化降解水中罗丹明B[J/OL]. 工程科学与技术:1-11[2023-10-07].[20] 李晨旭,彭伟,方振东等.过渡金属氧化物非均相催化过硫酸氢盐(PMS)活化及氧化降解水中污染物的研究进展[J].材料导报,2018,32(13):2223-2229.[21] Zhou M, Li W, Chen M, et al. Synthesis of Cu x Co3? x O4 nanocatalyst for degradation of nitrogenous organic wastewater in Fenton-like membrane reactor[J]. Applied Water Science, 2022, 12(4): 57.[22] Shi F, Shan H, Li D, et al. A general strategy to fabricate soft magnetic CuFe2O4@ SiO2 nanofibrous membranes as efficient and recyclable Fenton-like catalysts[J]. Journal of colloid and interface science, 2019, 538: 620-629.[23] Guo R, Li Y, Chen Y, et al. Efficient degradation of sulfamethoxazole by CoCu LDH composite membrane activating peroxymonosulfate with decreased metal ion leaching[J]. Chemical Engineering Journal, 2021, 417: 127887.[24] 肖鹏飞,安璐,韩爽.炭质材料在活化过硫酸盐高级氧化技术中的应用进展[J].化工进展,2020,39(08):3293-3306.[25] Gupta A D, Singh H, Varjani S, et al. A critical review on biochar-based catalysts for the abatement of toxic pollutants from water via advanced oxidation processes (AOPs)[J]. Science of the Total Environment, 2022, 849: 157831.[26] Chen W, Luo J, Du X, et al. Activated carbon-gravity driven biomimetic membrane (AC-GDBM) for organic micro-polluted water treatment[J]. Journal of Cleaner Production, 2021, 317: 128224.[27] Qiu Z, Zhang Y, Zhu X, et al. Biochar-based asymmetric membrane for selective removal and oxidation of hydrophobic organic pollutants[J]. Chemosphere, 2022, 300: 134509.[28] Qian Tang X, Dan Zhang Y, Wei Jiang Z, Mei Wang D, Zhi Huang C, Fang Li Y (2018) Fe3O4 and metal-organic framework MIL-101(Fe) composites catalyze luminol chemiluminescence for sensitively sensing hydrogen per-oxide and glucose. Talanta 179:43–50.[29] Wang S, Wu Q, Huang R, et al. Catalytic ceramic membrane integrated with granular activated carbon for efficient removal of organic pollutants[J]. Journal of Water Process Engineering, 2022, 47: 102751.[30] Zhang S F, Li H, Hou C, et al. Recyclable ZIF-9@ CA-Fe 3 O 4/RGO/cellulose composite membrane as efficient catalysts for activating peroxymonosulfate to degrade methylene blue[J]. Cellulose, 2020, 27: 3287-3300.[31] Wang X, Tong J, Ma J. Design of sisal fibre biochar/poly (dopamine)/NZVI@ PAN membrane for efficient degradation of tetracycline[J]. Reactive and Functional Polymers, 2023, 192: 105704.[32] Anasori, B., Naguib, M. & Guest Editors. Two-dimensional MXenes. MRS Bulletin 48, 238–244 (2023).[33] Li M, Ren G, Yang W, et al. Modulation of high-spin Co (II) in Li/Co-MOFs as efficient fenton-like catalysts[J]. Inorganic Chemistry, 2021, 60(16): 12405-12412.[34] Heckert E G, Seal S, Self W T. Fenton-like reaction catalyzed by the rare earth inner transition metal cerium[J]. Environmental science & technology, 2008, 42(13): 5014-5019.[35] Yue R, Sun X. A Self-cleaning, catalytic titanium carbide (MXene) membrane for efficient tetracycline degradation through peroxymonosulfate activation: Performance evaluation and mechanism study[J]. Separation and Purification Technology, 2021, 279: 119796.[36] 赵朝成,吴光锐.MOFs复合材料催化降解水中有机污染物的应用研究进展[J].化工进展,2019,38(04):1775-1784.[37] Dapaah M F, Niu Q, Yu Y Y, et al. Efficient persistent organic pollutant removal in water using MIL-metal–organic framework driven Fenton-like reactions: A critical review[J]. Chemical Engineering Journal, 2022, 431: 134182.[38] Jiang G, Jia Y, Wang J, et al. Facile preparation of novel Fe-BTC@ PAN nanofibrous aerogel membranes for highly efficient continuous flow degradation of organic dyes[J]. Separation and Purification Technology, 2022, 300: 121753.[39] 邵明辉,李秀泽,牛旭东等.稀土基催化材料及其活化过硫酸盐去除水中活性药物的研究进展[J].稀土,2023,44(01):128-139.[40] Yao L, Zhang L, Zhang Y, et al. Self-assembly of rare-earth Anderson polyoxometalates on the surface of imide polymeric hollow fiber membranes potentially for organic pollutant degradation[J]. Separation and Purification Technology, 2015, 151: 155-164.[41] Qing W, Li X, Shao S, Shi X, Wang J, Feng Y, et al Polymeric catalytically active membranes for reaction-separation coupling: a review. J Membr Sci 2019;583: 118–38.[42] Zhang Y, Yuan M, Lin R, et al. Degradation of Orange IV solution by a Fenton-like process using Fe 3+/PVDF-PMMA catalytic membrane[J]. Journal of Environmental Engineering, 2014, 140(3): 06014001.[43] Wang X, Dou L, Yang L, et al. Hierarchical structured MnO2@ SiO2 nanofibrous membranes with superb flexibility and enhanced catalytic performance[J]. Journal of hazardous materials, 2017, 324: 203-212.[44] 张瑛洁,王春霞,张丽等.TiO2/Fe3+催化膜催化H2O2降解水中孔雀石绿[J].工业水处理,2014,34(05):50-53.[45] Huang Z H, Zhang X, Wang Y X, et al. Fe3O4/PVDF catalytic membrane treatment organic wastewater with simultaneously improved permeability, catalytic property and anti-fouling[J]. Environmental Research, 2020, 187: 109617.[46] Wang Y, Li J, Sun J, et al. Electrospun flexible self-standing Cu–Al 2 O 3 fibrous membranes as Fenton catalysts for bisphenol A degradation[J]. Journal of Materials Chemistry A, 2017, 5(36): 19151-19158.[47] Zhang L P, Liu Z, Faraj Y, et al. High-flux efficient catalytic membranes incorporated with iron-based Fenton-like catalysts for degradation of organic pollutants[J]. Journal of Membrane Science, 2019, 573: 493-503.[48] Qing W, Liu F, Yao H, et al. Functional catalytic membrane development: A review of catalyst coating techniques[J]. Advances in Colloid and Interface Science, 2020, 282: 102207.[49] Qing, W., Liu, F., Yao, H., Sun, S., Chen, C., Zhang, W., 2020. Functional catalytic membrane development: a review of catalyst coating techniques[J]. Adv. Colloid Interface Sci, 282, 102207.[50] Dong L, Yang H, Liu S, et al. Fabrication and anti-biofouling properties of alumina and zeolite nanoparticle embedded ultrafiltration membranes[J]. Desalination, 2015, 365: 70-78.[51] Yun S, Ted Oyama S. Correlations in palladium membranes for hydrogen separation: a review. J Membr Sci 2011;375:28–45.[52] Wang S, Tian J, Wang Q, et al. Development of CuO coated ceramic hollow fiber membrane for peroxymonosulfate activation: a highly efficient singlet oxygen-dominated oxidation process for bisphenol a degradation[J]. Applied Catalysis B: Environmental, 2019, 256: 117783.[53] Yu Z, Min X, Li F, et al. A mussel‐inspired method to fabricate a novel reduced graphene oxide/Bi12O17Cl2 composites membrane for catalytic degradation and oil/water separation[J]. Polymers for Advanced Technologies, 2019, 30(1): 101-109.[54] Xu N, Han J, Feng Y, et al. Polyacrylonitrile/poly (acrylic acid) layer-by-layer superimposed composite nanofiber membrane with low iron ion leaching-out and stable methylene blue-removing performance[J]. Journal of Membrane Science, 2022, 641: 119935.[55] Molinari R, Palmisano L, Drioli E, et al. Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification[J]. Journal of Membrane Science, 2002, 206(1-2): 399-415.[56] Cao X, Luo J, Woodley J M, et al. Bioinspired multifunctional membrane for aquatic micropollutants removal[J]. ACS applied materials & interfaces, 2016, 8(44): 30511-30522.[57] Asif M B, Kang H, Zhang Z. Assembling CoAl-layered metal oxide into the gravity-driven catalytic membrane for Fenton-like catalytic degradation of pharmaceuticals and personal care products[J]. Chemical Engineering Journal, 2023, 463: 142340.[58] Bao, Y., Lim, T.-T., Wang, R., Webster, R.D., Hu, X., 2018. Urea-assisted one-step synthesis of cobalt ferrite impregnated ceramic membrane for sulfamethoxazole degradation via peroxymonosulfate activation. Chem. Eng. J. 343, 737–747.[59] Kregiel D. Advances in biofilm control for food and beverage industry using organo-silane technology: A review[J]. Food Control, 2014, 40: 32-40.[60] Livage J, Ganguli D. Sol–gel electrochromic coatings and devices: a review[J]. Solar Energy Materials and Solar Cells, 2001, 68(3-4): 365-381.[61] Demiral H, Demiral ?. Preparation and characterization of carbon molecular sieves from chestnut shell by chemical vapor deposition[J]. Advanced Powder Technology, 2018, 29(12): 3033-3039.[62] Chen F, Sun Y, Wang H, et al. Developing a PVDF catalytic membrane with high permeability, fouling resistance and self-cleaning capability for efficient oil/water emulsion separation [J]. Reactive and Functional Polymers, 2023: 105639.[63] 余希文. 高孔隙率PEO催化膜的设计、制备及其在微通道中的原位生长研究[D].华南理工大学,2017.[64] Liu F, Yao H, Sun S, et al. Photo-Fenton activation mechanism and antifouling performance of an FeOCl-coated ceramic membrane[J]. Chemical Engineering Journal, 2020, 402: 125477.[65] Fan B, Huang X, Liu C, et al. Highly Efficient Oxygen-Activated Self-Cleaning Membranes Prepared by Grafting a Metal–Organic Framework-Derived Catalyst[J]. ACS Applied Materials & Interfaces, 2022, 14(18): 20930-20942.[66] Lin H, Fang Q, Wang W, et al. Prussian blue/PVDF catalytic membrane with exceptional and stable Fenton oxidation performance for organic pollutants removal[J]. Applied Catalysis B: Environmental, 2020, 273: 119047.[67] Dong, X., Jin, W., Xu, N., Li, K., 2011. Dense ceramic catalytic membranes and membrane reactors for energy and environmental applications. Chem. Commun. 47 (39), 10886–10902.[68] Yan H, Lai C, Wang D, et al. In situ chemical oxidation: peroxide or persulfate coupled with membrane technology for wastewater treatment[J]. Journal of Materials Chemistry A, 2021, 9(20): 11944-11960.[69] Wang J, Cahyadi A, Wu B, et al. The roles of particles in enhancing membrane filtration: A review[J]. Journal of Membrane Science, 2020, 595: 117570.[70] Li N, Lu X, He M, et al. Catalytic membrane-based oxidation-filtration systems for organic wastewater purification: A review[J]. Journal of Hazardous Materials, 2021, 414: 125478.[71] Che A F, Huang X J, Xu Z K. Polyacrylonitrile-based nanofibrous membrane with glycosylated surface for lectin affinity adsorption[J]. Journal of Membrane Science, 2011, 366(1-2): 272-277.[72] 朱小康,李梅,杜甜甜等.过氧化氢高级氧化技术研究进展[J].城镇供水,2021(06):71-79.[73] 邱述兴,韩星,张梅等.异相类Fenton催化剂降解废水中抗生素研究进展及发展趋势[J].工程科学学报,2021,43(04):460-474.[74] 李亚男,郭凯,王嘉琪等.煤气化渣活化过二硫酸盐和过一硫酸盐降解苯酚的比较[J/OL].化工进展:1-12[2023-10-04].[75] 王海鑫,吕宗祥,钟道旭等.过硫酸盐高级氧化技术活化机理的研究进展[J].西部皮革,2022,44(13):90-93.[76] Li N, Lu X, He M, et al. Catalytic membrane-based oxidation-filtration systems for organic wastewater purification: A review[J]. Journal of Hazardous Materials, 2021, 414: 125478.[77] Nasar A, Mashkoor F. Application of polyaniline-based adsorbents for dye removal from water and wastewater—a review[J]. Environmental Science and Pollution Research, 2019, 26: 5333-5356.[78] 赵朋,周鹏飞,陈金芳等.高级氧化技术处理有机染料废水的研究进展[J].中国石油和化工标准与质量,2023,43(14):165-167.[79] Wang X, Dou L, Yang L, et al. Hierarchical structured MnO2@ SiO2 nanofibrous membranes with superb flexibility and enhanced catalytic performance[J]. Journal of hazardous materials, 2017, 324: 203-212.[80] Chen B, Hu X, Wang J, et al. Novel catalytic self-cleaning membrane with peroxymonosulfate activation for dual-function wastewater purification: Performance and mechanism[J]. Journal of Cleaner Production, 2022, 355: 131858.[81] Qu S, Wang W, Pan X, et al. Improving the Fenton catalytic performance of FeOCl using an electron mediator[J]. Journal of hazardous materials, 2020, 384: 121494.[82] 王瑞,杨福兴,曲广淼.颗粒污泥处理高负荷有机含油废水的形成过程及特性探究[J].水处理技术,2021,47(03):84-88.[83] Mokoba T, Li Z, Zhang T C, et al. Superwetting sea urchin-like BiOBr@ Co3O4 nanowire clusters-coated copper mesh with efficient emulsion separation and photo-Fenton-like degradation of soluble dye[J]. Applied Surface Science, 2022, 594: 153497.[84] Xie A, Wu Y, Liu Y, et al. Robust antifouling NH2-MIL-88B coated quartz fibrous membrane for efficient gravity-driven oil-water emulsion separation[J]. Journal of Membrane Science, 2022, 644: 120093.[85] Liu H, Sun Y, Xu H, et al. Dual-functional design of tubular polyvinyl chloride hybrid nanofiber membranes for the simultaneous oil/water separation and in-situ catalytic degradation[J]. Journal of Membrane Science, 2022, 661: 120955.[86] 贺德春,郑密密,黄伟等.污水处理过程中典型PPCPs的污染特征及降解转化研究进展[J/OL].环境科学:1-20[2023-10-04].[87] Huang J, Li Z, Zhang J, et al. In-situ synchronous carbonation and self-activation of biochar/geopolymer composite membrane: Enhanced catalyst for oxidative degradation of tetracycline in water[J]. Chemical Engineering Journal, 2020, 397: 125528.[88] Zhang W, Zhang S, Meng C, et al. Nanoconfined catalytic membranes assembled by cobalt-functionalized graphitic carbon nitride nanosheets for rapid degradation of pollutants[J]. Applied Catalysis B: Environmental, 2023, 322: 122098.[89] Chen L, Maqbool T, Nazir G, et al. Peroxymonosulfate activated by composite ceramic membrane for the removal of pharmaceuticals and personal care products (PPCPs) mixture: Insights of catalytic and noncatalytic oxidation[J]. Water Research, 2023, 229: 119444. |
[1] | 吕超 杨涛 陈峻峰. 稀土元素萃取分离技术研究现状与展望[J]. 石油炼制与化工, 2024, 55(2): 101-109. |
[2] | 王宇轩 花敬贤 潘宜昌 徐南平. 两步干凝胶转化法制备UiO-66膜并用于己烷异构体的高效分离[J]. 石油炼制与化工, 2024, 55(1): 112-121. |
[3] | 范瑛琦 李明丰 李保军 李强. 氦气提纯技术进展[J]. 石油炼制与化工, 2022, 53(10): 127-134. |
[4] | 曾丹林 胡义 王可苗 王光辉. 燃料油萃取脱硫技术研究进展[J]. 石油炼制与化工, 2012, 43(5): 98-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||