石油炼制与化工 ›› 2024, Vol. 55 ›› Issue (2): 75-83.
王佳静1,王建文1,李茂帅2,宋奕慧3,王石维3,吕静2,鲍晓军1,马新宾2
收稿日期:
2023-10-13
修回日期:
2023-10-23
出版日期:
2024-02-12
发布日期:
2024-01-29
通讯作者:
李茂帅
E-mail:maoshuaili@tju.edu.cn
基金资助:
Received:
2023-10-13
Revised:
2023-10-23
Online:
2024-02-12
Published:
2024-01-29
Contact:
Maoshuai Li
E-mail:maoshuaili@tju.edu.cn
Supported by:
摘要: 热催化CO2加氢制甲醇具有显著的减碳效应,能够有效储存可再生能源,具有广阔的工业应用前景。介绍了CO2加氢制甲醇的反应网络及其热力学挑战,并概述了其工艺流程、国内外工业应用情况,系统综述了近年来不同活性组分催化剂的研究进展,从催化剂的制备方式、活性位点、反应机理及动力学等方面阐述Cu基催化剂、贵金属催化剂、氧化物催化剂以及其他新型催化剂存在的问题和优势。重点阐述Cu基催化剂的构效关系,包括其活性组分结构、载体性质和助剂对催化活性和甲醇选择性的影响,并展望CO2加氢制甲醇催化剂的未来发展方向。
王佳静 王建文 李茂帅 宋奕慧 王石维 吕静 鲍晓军 马新宾. CO2催化加氢合成甲醇研究进展[J]. 石油炼制与化工, 2024, 55(2): 75-83.
[1]Tackett B M, Gomez E and Chen J G.Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes[J].Nature Catalysis, 2019, 2(5):381-386[2]Da Silva R J, Pimentel A F, Monteiro R S, et al.Synthesis of methanol and dimethyl ether from the CO2 hydrogenation over Cu·ZnO supported on Al2O3 and Nb2O5 [J]. Journal of CO2 Utilization, 2016, 15: 83-88.[J].Journal of CO2 Utilization, 2016, 15:83-88[3]Chinchen G C, Denny P J, Parker D G, et al.Mechanism of methanol synthesis from CO2COH2 mixtures over copperzinc oxidealumina catalysts: use of 14C-labelled reactants[J].Applied Catalysis, 1987, 30(2):333-338[4]Rasmussen P B, Kazuta M and Chorkendorff I J S S.Synthesis of methanol from a mixture of H2 and CO2 on Cu(100)[J].Surface science, 1994, 318(3):267-280[5]Bansode A and Urakawa A J J o C.Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products [J]. Journal of Catalysis, 2014, 309: 66-70.[J].Journal of Catalysis, 2014, 309:66-70[6]Chang X, Han X, Pan Y, et al.Insight into the Role of Cu–ZrO2 Interaction in Methanol Synthesis from CO2 Hydrogenation[J].Industrial & Engineering Chemistry Research, 2022, 61(20):6872-6883[7]Gaikwad R, Bansode A and Urakawa A.High-pressure advantages in stoichiometric hydrogenation of carbon dioxide to methanol [J]. Journal of Catalysis, 2016, 343: 127-132.[J].Journal of Catalysis, 2016, 343:127-132[8]Graaf G H, Sijtsema P J J M, Stamhuis E J, et al.Chemical equilibria in methanol synthesis[J].Chemical Engineering Science, 1986, 41(11):2883-2890[9]Dubois J-L, Sayama K and Arakawa H.Conversion of CO2 to Dimethylether and Methanol over Hybrid Catalysts[J].Chemistry Letters, 1992, 21(7):1115-1118[10]De S, Dokania A, Ramirez A, et al.Advances in the Design of Heterogeneous Catalysts and Thermocatalytic Processes for CO2 Utilization[J].ACS Catalysis, 2020, 10(23):14147-14185[11]Wang J, Zhang G, Zhu J, et al.CO2 Hydrogenation to Methanol over In2O3-Based Catalysts: From Mechanism to Catalyst Development[J].ACS Catalysis, 2021, 11(3):1406-1423[12]Wu C, Cheng D, Wang M, et al.Understanding and Application of Strong Metal–Support Interactions in Conversion of CO2 to Methanol: A Review[J].Energy & Fuels, 2021, 35(23):19012-19023[13]Li M M-J and Tsang S C E.Bimetallic catalysts for green methanol production CO2 and renewable hydrogen: a mini-review and prospects[J].Catalysis Science & Technology, 2018, 8(14):3450-3464[14]Murthy P S, Liang W, Jiang Y, et al.Cu-Based Nanocatalysts for CO2 Hydrogenation to Methanol[J].Energy & Fuels, 2021, 35(10):8558-8584[15]Dubois J-L, Sayama K and Arakawa H J C l.CO2 hydrogenation over carbide catalysts[J].Chemistry letters, 1992, 21(1):5-8[16]Toyir J, de la Piscina P R r, Fierro J L G, et al.Highly effective conversion of CO2 to methanol over supported and promoted copper-based catalysts: influence of support and promoter[J].Applied Catalysis B: Environmental, 2001, 29(3):207-215[17]Arena F, Barbera K, Italiano G, et al.Synthesis,characterization and activity pattern of Cu–ZnOZrO2 catalysts in the hydrogenation of carbon dioxide to methanol[J].Journal of Catalysis, 2007, 249(2):185-194[18]Angelo L, Girleanu M, Ersen O, et al.Catalyst synthesis by continuous coprecipitation under micro-fluidic conditions: Application to the preparation of catalysts for methanol synthesis from CO2/H2 [J]. Catalysis Today, 2016, 270: 59-67.[J].Catalysis Today, 2016, 270: 59-67., 2016, 270:59-67[19]Wang Z-Q, Xu Z-N, Peng S-Y, et al.High-Performance and Long-Lived CuSiO2 Nanocatalyst for CO2 Hydrogenation[J].ACS Catalysis, 2015, 5(7):4255-4259[20]Guo X, Mao D, Wang S, et al.Combustion synthesis of CuO–ZnO–ZrO2 catalysts for the hydrogenation of carbon dioxide to methanol[J].Catalysis Communications, 2009, 10(13):1661-1664[21]Guo X, Mao D, Lu G, et al.Glycine–nitrate combustion synthesis of CuO–ZnO–ZrO2 catalysts for methanol synthesis from CO2 hydrogenation[J].Journal of Catalysis, 2010, 271(2):178-185[22]Liao F, Huang Y, Ge J, et al.Morphology‐dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO2 to CH3OH[J].Angewandte Chemie, 2011, 123(9):2210-2213[23]S?oczyński J, Grabowski R, Olszewski P, et al.Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2 [J]. Applied Catalysis A: General, 2006, 310: 127-137.[J].General, 2006, 310:127-137[24]Bahruji H, Bowker M, Hutchings G, et al.Pd/ZnO catalysts for direct CO2 hydrogenation to methanol [J]. Journal of Catalysis, 2016, 343: 133-146.[J].Journal of Catalysis, 2016, 343:133-146[25]Collins S E, Baltanás M A and Bonivardi A L.An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pdβ-Ga2O3[J].Journal of Catalysis, 2004, 226(2):410-421[26]Han Z, Tang C, Wang J, et al.Atomically dispersed Ptn+ species as highly active sites in Pt/In2O3 catalysts for methanol synthesis from CO2 hydrogenation [J]. Journal of Catalysis, 2021, 394: 236-244.[J].Journal of Catalysis, 2021, 394:236-244[27]Fujitani T, Saito M, Kanai Y, et al.Development of an active Ga2O3 supported palladium catalyst for the synthesis of methanol from carbon dioxide and hydrogen[J].Applied Catalysis A: General, 1995, 125(2):L199-L202[28]Vourros A, Garagounis I, Kyriakou V, et al.Carbon dioxide hydrogenation over supported Au nanoparticles: Effect of the support [J]. Journal of CO2 Utilization, 2017, 19: 247-256.[J].Journal of CO2 Utilization, 2017, 19:247-256[29]Hartadi Y, Widmann D and Behm R J.CO2 Hydrogenation to Methanol on Supported Au Catalysts unde r Moderate Reaction Conditions: Support and Particle Size Effects[J].ChemSusChem, 2014, 8(3):456-465[30]Sun K, Lu W, Qiu F, et al.Direct synthesis of DME over bifunctional catalyst: surface properties and catalytic performance[J].Applied Catalysis A: General, 2003, 252(2):243-249[31]Grabowski R, S?oczyński J, ?liwa M, et al.Influence of Polymorphic ZrO2 Phases and the Silver Electronic State on the Activity of AgZrO2 Catalysts in the Hydrogenation of CO2 to Methanol[J].ACS catalysis, 2011, 1(4):266-278[32]Martin O, Martín A J, Mondelli C, et al.Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J].Angewandte Chemie, 2016, 128(21):6369-6373[33]Dang S, Qin B, Yang Y, et al.Rationally designed indium oxide catalysts for CO2 hydrogenation to methanol with high activity and selectivity[J].Science advances, 2020, 6(25):e-a[34]Wang J, Li G, Li Z, et al.A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J].Science advances, 2017, 3(10):e1701290-[35]Wang J, Tang C, Li G, et al.High-Performance MaZrOx (Ma = Cd,Ga) Solid-Solution Catalysts for CO2 Hydrogenation to Methanol[J].ACS Catalysis, 2019, 9(11):10253-10259[36]Bos M J and Brilman D W F.A novel condensation reactor for efficient CO2 to methanol conversion for storage of renewable electric energy [J]. Chemical Engineering Journal, 2015, 278: 527-532.[J].Chemical Engineering Journal, 2015, 278:527-532[37]Wu W, Xie K, Sun D, et al.CuOZnOAl2O3 Catalyst Prepared by Mechanical-Force-Driven Solid-State Ion Exchange and Its Excellent Catalytic Activity under Internal Cooling Condition[J].Industrial & Engineering Chemistry Research, 2017, 56(29):8216-8223[38]Song L, Wang H, Wang S, et al.Dual-site activation of H2 over Cu/ZnAl2O4 boosting CO2 hydrogenation to methanol [J]. Applied Catalysis B: Environmental, 2023, 322: 122137.[J].Applied Catalysis B: Environmental, 2023, 322:122-137[39]Zhang J, Sun X, Wu C, et al.Engineering Cu+/CeZrOx interfaces to promote CO2 hydrogenation to methanol [J]. Journal of Energy Chemistry, 2023, 77: 45-53.[J].Journal of Energy Chemistry, 2023, 77:45-53[40]Zhou H, Chen Z, López A V, et al.Engineering the CuMo2CTx (MXene) interface to drive CO2 hydrogenation to methanol[J].Nature Catalysis, 2021, 4(10):860-871[41]Liu Y-M, Liu J-T, Liu S-Z, et al.Reaction mechanisms of methanol synthesis from CO/CO2 hydrogenation on Cu2O(111): Comparison with Cu(111) [J]. Journal of CO2 Utilization, 2017, 20: 59-65.[J].Journal of CO2 Utilization, 2017, 20:59-65[42]Kondrat S A, Smith P J, Wells P P, et al.Stable amorphous georgeite as a precursor to a high-activity catalyst[J].Nature, 2016, 531(7592):83-87[43]Chen S, Zhang J, Wang P, et al.Effect of Vapor‐phase‐treatment to CuZnZr Catalyst on the Reaction Beh aviors in CO2 Hydrogenation into Methanol[J].ChemCatChem, 2019, 11(5):1448-1457[44]Brown N J, Weiner J, Hellgardt K, et al.Phosphinate stabilised ZnO and Cu colloidal nanocatalysts for CO2 hydrogenation to methanol[J].Chemical Communications, 2013, 49(94):11074-11076[45]Kattel S, Ramírez P J, Chen J G, et al.Active sites for CO2 hydrogenation to methanol on CuZnO catalysts[J].Science, 2017, 355(6331):1296-1299[46]Kattel S, Liu P and Chen J G.Tuning Selectivity of CO2 Hydrogenation Reactions at the MetalOxide Interface[J].Journal of the American Chemical Society, 2017, 139(29):9739-9754[47]Behrens M, Studt F, Kasatkin I, et al.The active site of methanol synthesis over CuZnOAl2O3 industrial catalysts[J].Science (New York, N.Y.), 2012, 336(6083):893-897[48]Liu T, Hong X and Liu G.In Situ Generation of the Cu@3D-ZrO2 Framework Catalyst for Selective Methanol Synthesis from CO2H2[J].ACS Catalysis, 2019, 10(1):93-102[49]Baltes C, Vukojevic S and Schuth F.Correlations between synthesis,precursor,and catalyst structure and activity of a large set of CuOZnOAl2O3 catalysts for methanol synthesis[J].Journal of Catalysis, 2008, 258(2):334-344[50]Frei E, Schaadt A, Ludwig T, et al.The Influence of the PrecipitationAgeing Temperature on a CuZnOZrO2 Catalyst for Methanol Synthesis from H2 and CO2[J].ChemCatChem, 2014, 6(6):1721-1730[51]Li L, Mao D, Yu J, et al.Highly selective hydrogenation of CO2 to methanol over CuO–ZnO–ZrO2 catalysts prepared by a surfactant-assisted co-precipitation method[J].Journal of Power Sources, 2015, 279(1):394-404[52]Wang D, Zhao J, Song H, et al.Characterization and performance of CuZnOAl2O3 catalysts prepared via decomposition of M(Cu,Zn)-ammonia complexes under sub-atmospheric pressure for methanol synthesis from H2 and CO2[J].Journal of Natural Gas Chemistry, 2011, 20(6):629-634[53]Kikuzono Y, Kagami S, Naito S, et al.Selective hydrogenation of carbon monoxide on palladium catalysts[J].Faraday Discussions of the Chemical Society, 1981, 72(0):135-143[54]Bowker M, Lawes N, Gow I, et al.The Critical Role of βPdZn Alloy in PdZnO Catalysts for the Hydrogenation of Carbon Dioxide to Methanol[J].ACS Catalysis, 2022, 12(9):5371-5379[55]Tran S B T, Choi H, Oh S, et al.Influence of Support Acidity of PtNb2O5 Catalysts on Selectivity of CO2 Hydrogenation[J].Catalysis Letters, 2019, 149(10):2823-2835[56]Liu C and Liu P J A C.Mechanistic Study of Methanol Synthesis from CO2 and H2 on a Modified Model Mo6S8 Cluster[J].ACS Catalysis, 2015, 5(2):1004-1012[57]Studt F, Sharafutdinov I, Abild-Pedersen F, et al.Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol[J].Nat Chem, 2014, 6(4):320-324[58]Liu X, Song Y, Geng W, et al.Cu-Mo2CMCM-41: An Efficient Catalyst for the Selective Synthesis of Methanol from CO2[J].Catalysts, 2016, 6(5):75-[59]Wang W, Wang S, Ma X, et al.Recent advances in catalytic hydrogenation of carbon dioxide[J].Chemical Society Reviews, 2011, 40(7):3703-3727[60]Tabatabaei J, Sakakini B H and Waugh K C.On the mechanism of methanol synthesis and the water-gas shift reaction on ZnO[J].Catalysis Letters, 2006, 110(1):77-84[61]Grabow L C and Mavrikakis M.Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation[J].ACS Catalysis, 2011, 1(4):365-384[62]Nie X, Esopi M R, Janik M J, et al.Selectivity of CO2 Reduction on Copper Electrodes: The Role of the Kinetics of Elementary Steps[J].Angewandte Chemie, 2013, 125(9):2519-2522[63]Karelovic A, Galdames G, Medina J C, et al.Mechanism and structure sensitivity of methanol synthesis from CO2 over SiO2-supported Cu nanoparticles [J]. Journal of Catalysis, 2019, 369: 415-426.[J].Journal of Catalysis, 2019, 369:415-426[64]Madon R J, Boudart M J I and Fundamentals E C.Experimental criterion for the absence of artifacts in the measurement of rates of heterogeneous catalytic reactions[J].Industrial & Engineering Chemistry Fundamentals, 1982, 21(4):438-447[65]Zhao Y-F, Yang Y, Mims C, et al.Insight into methanol synthesis from CO2 hydrogenation on Cu(111): Complex reaction network and the effects of H2O[J].Journal of Catalysis, 2011, 281(2):199-211[66]Ye J, Liu C, Mei D, et al.Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on In2O3(110): A DFT Study[J].ACS Catalysis, 2013, 3(6):1296-1306[67]Kattel S, Yan B, Chen J G, et al.CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: Importance of synergy between Pt and oxide support [J]. Journal of Catalysis, 2016, 343: 115-126.[J].Journal of Catalysis, 2016, 343:115-126[68]Han X, Li M, Chang X, et al.Hollow structured Cu@ZrO2 derived from Zr-MOF for selective hydrogenation of CO2 to methanol [J]. Journal of Energy Chemistry, 2022, 71: 277-287.[J].Journal of Energy Chemistry, 2022, 71:277-287[69]Chiavassa D L, Collins S E, Bonivardi A L, et al.Methanol synthesis from CO2H2 using Ga2O3–Pdsilica catalysts: Kinetic modeling[J].Chemical Engineering Journal, 2009, 150(1):204-212[70]Anicic B, Trop P and Goricanec D.Comparison between two methods of methanol production from carbon dioxide [J]. Energy, 2014, 77: 279-289[J].Energy, 2014, 77:279-289 |
[1] | 代巧玲 孙佳新 贾燕子 胡大为. 二氧化硅包覆核壳结构催化剂的制备与应用研究进展[J]. 石油炼制与化工, 2024, 55(3): 148-153. |
[2] | 牛丛丛 栾学斌 徐润 夏国富. 分布式甲醇重整制氢动力学及反应器强化研究[J]. 石油炼制与化工, 2024, 55(3): 67-74. |
[3] | 陈超群 张莹 张丽. Cu-Mn-Si催化剂的制备及其在仲丁醇脱氢反应中的应用[J]. 石油炼制与化工, 2024, 55(3): 21-26. |
[4] | 张超群 范鸣 杨乾坚 侯远东 赵翔 王培全. PHD-112/PHU-301催化剂级配生产国Ⅵ低凝柴油的首次工业应用[J]. 石油炼制与化工, 2024, 55(3): 27-31. |
[5] | 董松涛 赵阳 赵广乐 胡志海 莫昌艺. 加氢裂化催化剂RHC-133的开发与应用[J]. 石油炼制与化工, 2024, 55(3): 1-8. |
[6] | 邵志才 刘涛 胡大为 戴立顺. 前置上流式反应器的固定床渣油加氢工艺运行分析及研发建议[J]. 石油炼制与化工, 2024, 55(3): 32-37. |
[7] | 穆海涛 刘春柳. 基于ASPEN软件的戊烷发泡剂生产实践及增产措施[J]. 石油炼制与化工, 2024, 55(3): 61-66. |
[8] | 王硕 张浩楠 杨英. 电解水催化剂界面结构调控研究进展[J]. 石油炼制与化工, 2024, 55(2): 1-9. |
[9] | 李世刚 李冰 刘晓晖 郭勇 王艳芹. 氨分解催化剂研究进展[J]. 石油炼制与化工, 2024, 55(2): 10-22. |
[10] | 于松印 崔钰函 刘洋 梁长海 李闯. 脂肪酸多相选择性加氢制备脂肪醇研究进展[J]. 石油炼制与化工, 2024, 55(2): 43-51. |
[11] | 刘丛玮 王猛 张燕 单文坡. 柴油车尾气氧化催化剂硫磷中毒研究进展[J]. 石油炼制与化工, 2024, 55(2): 23-35. |
[12] | 罗爽 王健健. 生物质基二元醇催化定制过程钨基催化剂研究进展[J]. 石油炼制与化工, 2024, 55(2): 52-63. |
[13] | 陈自娇 罗利平 张博 郭勤 苗鹏杰. CO2与甲醇直接合成碳酸二甲酯的催 化剂研究进展[J]. 石油炼制与化工, 2024, 55(2): 84-90. |
[14] | 申强 杨峥豪 张香港 段孝旭 马良 江霞 常玉龙. CO2捕集过程中气液传质强化研究进展[J]. 石油炼制与化工, 2024, 55(2): 64-74. |
[15] | 徐鑫 李志 齐健 严媛 杨鹏飞 黄岚. 基于工业化应用视角的低浓度甲烷催化燃烧催化剂研究进展[J]. 石油炼制与化工, 2024, 55(2): 121-127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||