石油炼制与化工 ›› 2025, Vol. 56 ›› Issue (5): 169-179.

• 特约文章 • 上一篇    下一篇

分子水平MIP-CGP工艺反应动力学研究及应用

覃兴龙1,纪晔2,蔡广庆2,叶磊1,田冬妮3,信函3,刘纪昌1,3   

  1. 1. 华东理工大学化工学院
    2. 中国石油天然气股份有限公司规划总院
    3. 石河子大学石河子大学化学化工学院
  • 收稿日期:2024-12-03 修回日期:2024-12-16 出版日期:2025-05-12 发布日期:2025-04-14
  • 通讯作者: 覃兴龙 E-mail:qinxl@ecust.edu.cn
  • 基金资助:
    企业创新发展联合基金重点项目;国家自然科学基金资助项目-青年科学基金项目

STUDY AND APPLICATION OF THE REACTION KINETICS OF CATALYTIC CRACKING PROCESS MIP-CGP AT MOLECULAR LEVEL


  • Received:2024-12-03 Revised:2024-12-16 Online:2025-05-12 Published:2025-04-14
  • Contact: Xinglong QIN E-mail:qinxl@ecust.edu.cn

摘要: 催化裂化反应动力学研究可以为工业装置的“安稳长满优”生产提供决策依据,推动催化裂化技术进步,深化对催化裂化反应机理和反应网络的理解。基于此,以分子炼油理念为指导,采用结构导向集总(SOL)方法和多种分析手段,实现了对催化裂化原料油分子组成的数字化重构;结合反应机理,构建了分子水平的催化裂化反应动力学模型;结合MIP-CGP工艺工业装置的反应器结构特征,构建了分子水平的催化裂化反应过程模型。利用上述模型,在分子水平上研究了反应条件对催化裂化产物分布的影响,并对催化裂化过程进行了优化。结果表明:当反应温度由500℃上升到560℃时,汽油中戊烯、异戊烯和甲基噻吩分子的含量上升,甲基己烯含量先升后降,柴油中丁基萘、甲基菲和二甲基苯并噻吩分子的含量上升;从分子水平上阐明了较低反应温度有助于降低汽油中烯烃含量和硫含量,以及柴油中多环芳烃含量和硫含量的原理。保证汽油收率不小于40%且汽油中烯烃体积分数不大于18%的反应温度为515~525℃,剂油质量比为8.0~10.0。上述结果表明,基于SOL的催化裂化反应过程模型可以为炼油厂重油轻质化过程的工艺优化提供分子水平的理论指导。

关键词: 分子炼油, 结构导向集总, 催化裂化, 反应动力学

Abstract: The study of reaction kinetics can provide decision-making basis for the production of “Safe, Stable, Long cycle, Full load, High quality” of the industrial catalytic cracking unit, promote the progress of catalytic cracking technology, and help deepen the understanding of reaction mechanism and reaction network. In this paper, based on the guidance of molecular refining, the digital reconstruction of molecular composition of feed oil is realized based on the structure-oriented lumping(SOL) method and advanced analytical instruments. Based on the reaction mechanism, a molecular level catalytic cracking reaction kinetics model is constructed. Combined with the reactor structure characteristics of catalytic cracking unit (MIP-CGP process), a molecular level catalytic cracking reaction process model is constructed. The effects of reaction conditions on product distribution are studied at molecular level and the optimization of catalytic cracking process is carried out by the calculation of the model. As the reaction temperature increase from 500℃ to 560℃, the content of pentene, isopentene and methyl thiophene molecules in gasoline increase, the content of methyl hexene in gasoline first increase and then decrease, and the content of butyl naphthalene, methyl phenanthrene and dimethyl benzothiophene molecules in diesel increase. It elucidates from the molecular level that low temperature contributes to the reduction of the olefins and sulfur content in gasoline and the polycyclic aromatic hydrocarbons and sulfur content in diesel. If the gasoline yield is not less than 40% and the olefin content in gasoline is not more than 18%, the reaction temperature range is 515―525℃ and the ratio of catalyst to oil range is 8.0―10.0. The catalytic cracking reactor model based on the SOL method can provide the theoretical guidance at the molecular level for the process optimization of heavy oil lightering in refineries.

Key words: molecular refining, structure-oriented lumping, catalytic cracking, reaction kinetics