Petroleum Processing and Petrochemicals ›› 2019, Vol. 50 ›› Issue (7): 109-118.
#br#
Received:
2018-06-21
Online:
2019-07-12
Published:
2019-07-25
Contact:
Jian ZhiDa
E-mail:dazhijian.ripp@sinopec.com
Supported by:
CLC Number:
Peng YanYang Min Jia Ma Aizeng Ji Nie Jian ZhiDa. γ-Al2O3 PREPARATION WITH DIFFERENT MORPHOLOGIES AND ITS EFFECT ON Pt STABILITY[J]. Petroleum Processing and Petrochemicals, 2019, 50(7): 109-118.
[1]Sa′nchez-Valente J, Bokhimi X, Herna′ndez F.Physicochemical and Catalytic Properties of Sol-Gel Aluminas Aged under Hydrothermal Conditions[J].Langmuir, 2003, 19(9):3583-3588 [2]Libor Kovarik, Arda Genc, Chongmin Wang, et al.Tomography and high-resolution electron microscopy study of surfaces and porosity in a plate-like γ-Al2O3[J].J Phys Chem C, 2013, 117(1):179-186 [3] Pierre Alphonse, Matthieu Courty.Structure and thermal behavior of nanocrystalline boehmite[J].Thermochimica Acta, 2005, 425(1-2):75-89 [4]Jiao Wenqian, Wu Xuezhong, Xue Teng, et al.Morphological controlled growth of nanosized boehmite with enhanced aspect ratios in an organic additive-free cationic-anionic double hydrolysis method[J].Cryst Growth Des, 2016, 16(9):5166-5173 [5] Mironenko R M, Belskaya O B, Talsi V P, et al.Effect of γ-Al2O3 hydrothermal treatment on the formation and properties of platinum sites in Pt/γ-Al2O3 catalysts[J].Applied Catalysis A: General, 2014, 469(-):472-482 [6]Gorczyca A, Moizan V, Chizallet C, et al.Monitoring morphology and hydrogen coverage of nanometric Ptγ-Al2O3 particles by in situ HERFD–XANES and quantum simulations[J].Angew Chem Int Ed, 2014, 53(46):12426-12429 [7]Tettenhorst R, Douglas A H.Crystal Chemistry of boehmite[J].Clays and Clay Minerals, 1980, 28(5):373-380 [8]Kuiry S C, Megen E, Patil S D, et al.Solution-based chemical synthesis of boehmite nanofibers and alumina nanorods[J].Journal of Physical Chemistry B, 2005, 109(9):3868-3872 [9]Shoucang Shen, Wai Kiong Ng, Leonard Sze Onn Chia, et al.Morphology controllable synthesis of nanostructured boehmite and γ-alumina by facile dry gel conversion[J].Cryst Growth Des, 2012, 12(10):4987-4994 [10]Popa A F, Rossognol S, Kappenstein C.Ordered structure and preferred orientation of boehmite films prepared by the sol-gel method[J].Journal of non-crystalline solids, 2002, 306(2):169-174 [11]Chester AW, Absil R P A, Kennedy G J, et al.X-Ray absorption spectroscopy of transition aluminas[J].Synchrotron Rad, 1999, 6(3):448-450 [12]Wang J A, Bokhimi X, Morales A, et al.Aluminum local environment and defects in the crystalline structure of sol-gel alumina catalyst[J].J Phys Chem B, 1999, 103(2):299-303 [13] Mariotto G, Cazzanelli E, Carturan G, et al.Raman and X-ray diffraction study of boehmite gels and their transformation to α- or β-alumina [J].J Solid State Chem, 1990, 86(2):263-274 [14] Padmaja P, Pillai P K, Warrier K G K, et al.Adsorption isotherm and pore characteristics of nano alumina derived from sol-gel boehmite[J].Journal of Porous Materials, 2004, 11(3):147-155 [15]Krokidis Xenophon, Pascal Raybaud, Anne-Elisabeth Gobichon, et al.Theoretical study of the dehydration process of boehmite to γ-alumina[J].J Phys Chem B, 2001, 105(22):5121-5130 [16]Lee M H, Cheng C F, Heine V, et al.Distribution of tetragonal and octahedral Al sites in gamma alumina[J].Chem Phys Lett, 1997, 265(6):673-676 [17]John C S, Alma V C, Hays G R.Characterization of transitional alumina by solid-state magic angle spinning aluminium NMR[J].Appl Catal, 1983, 6(3):341-346 [18]Fitzgerald J J, Gilberto P, Steven F D, et al.Dehydration studies of a high-surface-area alumina(pseudo-boehmite) using solid-state 1H and 27Al NMR[J].J Am Chem Soc, 1997, 119(33):7832-7842 [19]Nguefack M, Popa A F, Rossignol S, et al.Preparation of alumina through a sol-gel process: synthesis,characterization,thermal evolution and model of intermediate boehmite[J].Phys Chem Chem Phys, 2003, 5(19):4279-4289 [20]Digne M, Sautet P, Raybaud P, et al.Structure and stability of aluminum hydroxides: a theoretical study[J].J Phys Chem B, 2002, 106(20):5155-5162 [21] Klaus Diblitz, Tilo Feldbaum, Thomas Ludemann.Manufacturing of raw materials for the catalyst industry[J].Studies in surface science and catalysis, 1998, 113(-):599-611 [22]Potdar H S, Jun K W, Bae J W, et al.Synthesis of nanosized porous γ-alumina via a precipitationdigestion route[J].Applied Catalysis A: General, 2007, 321(2):109-116 [23]Borsella E, Botti S, Alexandresu R, et al.Nanocomposite ceramic powder production by laser-induced gas-phase reactions[J].Mater Sci Eng, 1993, 168(2):177-181 [24]Borsella E, Botti S, Giorgi R, et al.Laser-driven synthesis of nanocrystalline alumina powders from gas-phase precursors[J].Applied Physics Letters, 1993, 63(10):1345-1347 [25]Jolivet J P, Froidefond C, Pottier A, et al.Size tailoring of oxide nanoparticles by precipitation in aqueous mediumA semi-quantitative modelling[J].J Mater Chem, 2004, 14(21):3281-3288 [26]Bokhimi X, SaHnchez-Valente J, Pedraza F.Crystallization of Sol-Gel Boehmite via Hydrothermal Annealing[J].Journal of Solid State Chemistry, 2002, 166(1):182-190 [27] David C, Chanéac C, Revela R, et al.Use of polyols as particle size and shape controllers: application to boehmite synthesis from sol–gel routes[J].Phys Chem Chem Phys, 2011, -(13):6241-6248 [28]Jolivet J P, Cassaignon S, Chaneac C, et al.Design of metal oxide nanoparticles: Control of size,shape,crystalline structure and functionalization by aqueous chemistry[J].Comptes Rendus Chimie, 2010, 13(1-2):40-51 [29]Jolivet J P, Cassaignon S, Chaneac C, et al.Design of oxide nanoparticles by aqueous chemistry[J].J Sol-Gel Sci Technol, 2008, 46(3):299-305 [30] Jolivet J P, Chaneac C, Tronc E, et al.Iron oxide chemistry: From molecular clusters to extended solid networks[J].Chem Commun, 2004, -(5):481-487 [31] David C, Chaneac C, Revel R, et al.Size and Shape Control of γ-AlOOH Boehmite Nanoparticles, a Precursor of γ-Al2O3 Catalyst [J].Studies in Surface Science and Catalysis, 2006, 162(-):393-400 [32] Euzen P, Raybaud P, Krokidis X, et al.Alumina [M]. Schfith F, Sing K, Weitkamp J. Handbook of Porous Solids, 2002, 3:1951-1677. Wiley-VCH Verlag GmbH, Weinheim, Germany [33]Violante A, Huang P M.Influence of inorganic and organic ligands on the formation of aluminum hydroxides and oxyhydroxides[J].Clays and Clay minerals, 1985, 33(3):181-192 [34]Violante A, Pigna M, Ricciardella M, et al.Adsorption of phosphate on variable charge minerals and soils as affected by organic and inorganic ligands[J].Developments in Soil Science, 2002, 28(A):279-295 [35]Maria Lúcia Pereira Antunes, Helena de Souza Santos, Persio de Souza Santos.Characterization of the aluminum hydroxide microcrystals formed in some alcohol–water solutions[J].Materials Chemistry and Physics, 2002, 76(3):243-249 [36]Violante A, Violante P.Influence of pH,concentration,and chelating power of organic anions on the synthesis of aluminum hydroxides and oxyhydroxides[J].Clays and Clay Minerals, 1980, 28(6):425-434 [37]Paulaime A M, Seyssiecq I, Veesler S.The influence of organic additives on the crystallization and agglomeration of gibbsite[J].Powder Technology, 2003, 130(1-3):345-351 [38]David C , Chizallet C, .Growth of boehmite particles in the presence of xylitol: morphology oriented by the nest effect of hydrogen bonding [J].Phys Chem Chem Phys, , 2009,, 47(11):11310-11323 [39]Persio de Souza Santos, Antonio Carlos Vieira Coelho,Helena de Souza Santos,et al.Hydrothermal synthesis of well-crystallised boehmite crystals of various shapes[J].Materials Research, 2009, 12(4):437-445 [40]Wilson S J.The dehydration of boehmite,γ-AlOOH,to γ-Al2O3[J].Journal of Solid State Chemistry, 1979, 30(2):247-255 [41]Espinat D, Thevenot F, Grimoud J, et al.Powerful new software for the simulation of WAXS and SAXS Diagrams[J].J Appl Crystallogr, 1993, 26(3):368-383 [42] Langford J I, Wilson A J C.Scherrer after Sixty Years: a survey and some new results in the determination of crystallite size[J].J Appl Crystallogr, 1978, 11(-):102-113 [43]Sherwood D, Emmanuel B.Computing shapes of nanocrystals from X-ray diffraction data[J].Cryst Growth Des, 2006, 6(6):1415-1419 [44]Moreaud M, Revel R, Jeulin D, et al.Size of boehmite nanoparticles by TEM images analysis[J].Image Analysis and Stereology, 2009, 28(3):187-193 [45]Nortier P, Fourre P, Mohammed Saad A B, et al.Effects of crystallinity and morphology on the surface properties ofalumina[J].Applied Catalysis, 1990, 61(1):141-160 [46]Laurence M, Francoise B, Emanuelle L, et al.Self-organization of size-selected nanoparticles into three-dimensional superlattices[J].Adv Mater, 1996, 12(8):1018-1020 [47]Zeng X, Koshizaki N, Sasaki T.A direct comparison of sizes characterized by TEM and AFM for Fe2O3 nanoparticles prepared by laser ablation[J].Applied Physics A, 1999, 69(7):253-255 [48]Chiche D, Digne M, Revel R, et al.Accurate Determination of Oxide Nanoparticle Size and Shape Based on X-Ray Powder Pattern Simulation: Application to Boehmite AlOOH[J].J Phys Chem C, 2008, 112(23):8524-8533 [49]Moreaud M, Jeulin D, Morard V, et al.TEM image analysis and modelling: application to boehmite nanoparticles[J].Journal of Microscopy, 2012, 245(2):186-199 [50]Busca G.The surface acidity of solid oxides and its characterization by IR spectroscopic methodsAn attempt at systematization[J].Phys Chem Chem Phys, 1999, 1(5):723-736 [51]Peri J B.A model for the surface of γ-alumina[J].J Phys Chem, 1965, 69(1):220-230 [52]Peri J B.Infrared and gravimetric study of the surface hydration of γ-alumina[J].J Phys Chem, 1965, 69(1):211-219 [53]Peri J B.Infrared study of the reaction of hydrogen chloride with the surface of γ-alumina and its effect on surface “acid” sites[J].J Phys Chem, 1966, 70(5):1482-1491 [54] Tsyganenko A A, Filimonov V N.Infrared spectra of surface hydroxyl groups and crystalline structure of oxides[J].Journal of Molecular Structure, 1973, 19(-):579-589 [55] Knozinger H, Ratnasamy P.Catalytic aluminas: surface models and characterization of surface sites[J].Catal Rev Sci Eng, 1978, 17(-):31-70 [56]Knozinger H.Acidic and basic properties of aluminas in relation to their properties as catalysts and supports[J].Studies in Surface Science and Catalysis, 1985, 20(-):111-125 [57] Busca G, Lorenzelli V, Ramis G.Low-temperature oxidation of light paraffins and olefins at solid surfaces: FT-IR studies[J].Studies in Surface Science and Catalysis, 1993, 75(-):2661-2664 [58] Ramis G, Busca G, Lorenzelli V.Low-temperature CO2 adsorption on metal oxides: spectroscopic characterization of some weakly adsorbed species [J].Materials Chemistry and Physics, 1991, 29(1-4):425-435 [59]Digne M, Sautet P, Raybaud P, et al.Hydroxyl groups on γ-alumina surfaces: A DFT study[J].Journal of Catalysis, 2002, 211(1):1-5 [60]Digne M, Sautet P, Raybaud P, et al.Use of DFT to achieve a rational understanding of acid-basic properties of γ-alumina surfaces[J].Journal of Catalysis, 2004, 226(1):54-68 [61]Arrouvel C, Digne M, Breysse M, et al.Effects of morphology on surface hydroxyl concentration: A DFT comparison of anatase-TiO2 and γ-alumina catalytic supports[J].Journal of Catalysis, 2004, 222(1):152-166 [62]Hu C H, Chizallet C, Maury C M,et al.Modulation of catalyst particle structure upon support hydroxylation: Ab initio insights into Pd13 and Pt13γ-Al2O3[J].Journal of Catalysis, 2010, 274(1):99-110 [63]Mager-Maury C, Chizallet C, Sautet P, et al.Platinum nanoclusters stabilized on γ-alumina by chlorine used as a capping surface ligand: a density functional theory study[J].ACS Catal, 2012, 7(2):1346-1357 [64]Digne M, Sautet P, Raybaud P, et al.Atomic scale insights on chlorinated γ-alumina surfaces[J].J Am Chem Soc, 2008, 130(33):11030-11039 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||