[1]Schrag D P. Preparing to capture carbon[J]. Science,2007,315(5813):812-813[2]Yuan Dandan,Yan Cuihong,Lu Bin,et al. Electroc- hemical activation of carbon dioxide for synthesis of dimethyl carbonate in an ionic liquid Electrochim[J]. Electrochimica Acta,2009,54(10):2912-2915[3]Whipple D T,Kenis P. Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction[J]. The Journal of Physical Chemistry Letters,2010,1(24):3451-3458[4]Handoko A D,Tang Junwang. Controllable proton and CO2 photoreduction over Cu2O with various morphologies[J]. International Journal of Hydrogen Energy,2013,38(29):13017-13022[5]An Xiaoqiang,Li Kimfung,Tang Junwang. Insider Cover: Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO[J]. Chem Sus Chem,2014,7(4):1086-1093[6]Wang Jichao,Zhang Lin,Fang Wenxue,et al. Enhanced Photoreduction CO2 Activity over Direct Z-Scheme α-Fe2O3/Cu2O Heterostructures under Visible Light Irradiation[J]. ACS applied materials & interfaces,2015,7(16):8631-8639.[7]Aguirre M E,Zhou Ruixin,Eugene A J,et al. Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion[J].Applied Catalysis B: Environmental,2017,217:485-493[8]Tashkandi N Y,Mohamed R M. Sol-gel assembled MnCo2O4/rGO photocatalyst for enhanced production of aniline from photoreduction of nitrobenzene under visible light[J]. Ceramics International,2022,48(9):13216-13228[9]Alhaddad M,Mohamed R M,Mahmoud M H H. Promoting visible light generation of hydrogen using a sol-gel-prepared MnCo2O4@g-C3N4 p-n heterojunction photocatalyst[J].ACS Omega,2021,6(12):8717-8725[10]Mohammad H H,Payman B. Enhanced photo-catalytic degradation of naphthol blue black on nano-structure MnCo2O4: charge separation of the photo-generated electron- hole pair[J]. Journal of Materials Science: Materials in Electronics,2017,28(1):289-294[11]Wang Sibo,Hou Yidong,Wang Xinchen. Development of a stable MnCo2O4 cocatalyst for photocatalytic CO2 reduction with visible light[J]. ACS Applied Materials & Interfaces,2015,7(7):4327-4335[12]Zhu Hailing,Zhang Junying,Li Chunzhi,et al. Cu2O thin films deposited by reactive direct current magnetron sputtering[J]. Thin Solid Films,2009,517(19):5700-5704[13]Mousavi-Kamazani M,Zarghami Z,Rahmatolahzadeh R,et al. Solvent-free synthesis of Cu-Cu2O nanocomposites via green thermal decomposition route using novel precursor and investigation of its photocatalytic activity[J]. Advanced Powder Technology,2017,28(9):2078-2086[14]Wang Peng,Zhao Xinhong,Li Hairong,et al. Temperature sensitive optical properties of exciton and room-temperature visible light emission from disordered Cu2O nanowires[J]. RSC Advances,2014,4(71):37542-37546[15]Prajapati P K,Saini S,Nandal N,et al. Photochemical fixation of carbon dioxide for N-formylation of amine using Cu(II) embedded BiVO4 nanocomposite under visible light[J]. Journal of CO2 Utilization,2021,45:101402[16]Xu Quanlong,Zhang Liuyang,Yu Jiaguo,et al. Direct Z-scheme photocatalysts: Principles, synthesis, and applications[J]. Materials. Today,2018,21(10):1042-1063[17]Hao Jingyuan,Qi Baojin,Wei Jinjia,et al. A Z-scheme Cu2O/WO3 heterojunction for production of renewable hydrocarbon fuel from carbon dioxide[J]. Fuel,2021,287(1):119439[18]Nan Fengtang,Yan Pingliang. Study on photoelectric catalysis reduction of CO2 on a WO3 Modified Cu2O composite electrode[J]. Applied Mechanics and Materials,2014,3637(694):442-445