PETROLEUM PROCESSING AND PETROCHEMICALS ›› 2023, Vol. 54 ›› Issue (2): 117-125.
Previous Articles Next Articles
Received:
2022-05-26
Revised:
2022-09-19
Online:
2023-02-12
Published:
2023-02-24
Contact:
le zhang
E-mail:zhangle.ripp@sinopec.com
[1] 聂红, 张乐, 丁石, 等. 柴油高效清洁化关键技术与应用[J]. 石油炼制与化工, 2021,52(10):103-109. [2] 张乐, 李明丰, 丁石, 等. 原料性质对柴油超深度加氢脱硫NiMoW/Al2O3催化剂活性稳定性的影响[J]. 石油学报(石油加工), 2017,33(05):834-841. [3] 张乐, 刘清河, 聂红, 等. 高稳定性超深度脱硫和多环芳烃深度饱和柴油加氢催化剂RS-3100的开发[J]. 石油炼制与化工, 2021,52(10):150-156. [4] Nie H, Li H, Yang Q, et al. Effect of structure and stability of active phase on catalytic performance of hydrotreating catalysts[J]. Catalysis Today, 2018,316:13-20. [5] Tops?e H, Clausen B S, Massoth F E. Hydrotreating Catalysis Catalysis: science and technology. Berlin: Springer, 1996, P29-P35. [6] Lauritsen J V, Helveg S, L?gsgaard E, et al. Atomic-Scale Structure of Co–Mo–S Nanoclusters in Hydrotreating Catalysts[J]. Journal of Catalysis, 2001,197(1):1-5. [7] LAURITSEN J, KIBSGAARD J, OLESEN G, et al. Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts[J]. Journal of Catalysis, 2007,249(2):220-233. [8] Byskov L S, N?rskov J K, Clausen B S, et al. DFT Calculations of Unpromoted and Promoted MoS2-Based Hydrodesulfurization Catalysts[J]. Journal of Catalysis, 1999,187(1):109-122. [9] Brorson M, Carlsson A, Tops?e H. The morphology of MoS2, WS2, Co–Mo–S, Ni–Mo–S and Ni–W–S nanoclusters in hydrodesulfurization catalysts revealed by HAADF-STEM[J]. Catalysis Today, 2007,123(1-4):31-36.[10] Besenbacher F, Brorson M, Clausen B S, et al. Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effects[J]. Catalysis Today, 2008,130(1):86-96.[11] Baubet B, Girleanu M, Gay A, et al. Quantitative Two-Dimensional (2D) Morphology–Selectivity Relationship of CoMoS Nanolayers: A Combined High-Resolution High-Angle Annular Dark Field Scanning Transmission Electron Microscopy (HR HAADF-STEM) and Density Functional Theory (DFT) Study[J]. ACS Catalysis, 2016,6(2):1081-1092.[12] Eijsbouts S, van den Oetelaar L C A, Rayner M, et al. Combined HR TEM and STEM-EDX evaluation – The key to better understanding of the Co-Mo sulfide active phase in real-life Co-Mo-P/Al2O3 catalysts[J]. Journal of Catalysis, 2021,403:56-73.[13] 何文会, 张乐, 向彦娟, 等. 负载型加氢脱硫催化剂的原子尺度微观结构[J]. 石油学报(石油加工), 2020,36(02):230-235.[14] He W, Hu A, Qiu L, et al. Insight into the Microstructure and Deactivation Effects on Commercial NiMo/γ-Al2O3 Catalyst through Aberration-Corrected Scanning Transmission Electron Microscopy[J]. Catalysts, 2019,9(10):810.[15] Li H, Li M, Yang C, et al. Design of the Metal Precursors Molecular Structures in Impregnating Solutions for Preparation of Efficient NiMo/Al2O3 Hydrodesulfurization Catalysts[J]. China Petroleum Processing & Petrochemical Technology, 2015,17(004):37-45.[16] Bara C, Lamic-Humblot A, Fonda E, et al. Surface-dependent sulfidation and orientation of MoS2 slabs on alumina-supported model hydrodesulfurization catalysts[J]. Journal of Catalysis, 2016,344:591-605.[17] Araki Y, Honna K, Shimada H. Formation and Catalytic Properties of Edge-Bonded Molybdenum Sulfide Catalysts on TiO2[J]. Journal of Catalysis, 2002,207(2):361-370.[18] Li M, Li H, Jiang F, et al. Effect of surface characteristics of different alumina on metal–support interaction and hydrodesulfurization activity[J]. Fuel, 2009,88(7):1281-1285.[19] 郭长友, 沈智奇, 凌凤香, 等. 氧化铝表面Ti修饰对负载金属Mo分散性能的影响[J]. 石油炼制与化工, 2017,48(03):75-80.[20] GUO X, SONG M, ZHAO X, et al. Effect of fluoride promoter on the catalytic activity of NiWF/γ-Al2O3 for hydrodenitrogenation and hydrodesulfurization of coal tar[J]. Journal of Fuel Chemistry and Technology, 2016,44(11):1326-1333.[21] 李会峰, 李明丰, 张乐, 等. 氟改性对不同钨物种在催化剂载体上分散及其加氢脱硫性能的影响[J]. 石油炼制与化工, 2019,50(10):1-7.[22] 聂红, 龙湘云, 刘清河, 等. 柠檬酸对NiW/Al2O3加氢脱硫催化剂硫化行为的影响[J]. 石油学报(石油加工), 2010,26(03):329-335.[23] Hu D, Li H, Mei J, et al. The effect of chelating agent on hydrodesulfurization reaction of ordered mesoporous alumina supported NiMo catalysts[J]. Petroleum Science, 2022,19(1):321-328.[24] 李会峰, 李明丰, 张乐, 等. 有机添加物对活性相形貌调控及原生积炭对加氢脱硫活性的影响[J]. 石油学报(石油加工), 2020,36(02):253-261.[25] 薛冬, 吕振辉. 柠檬酸添加方式对Mo-Ni-P/Al2O3催化剂加氢活性的影响[J]. 分子催化, 2017,31(04):382-389.[26] 户安鹏, 陈文斌, 龙湘云, 等. 柠檬酸对NiMo/γ-Al2O3催化剂中助剂Ni作用的影响[J]. 石油炼制与化工, 2018,49(10):52-57.[27] Zavala-Sanchez L, Portier X, Maugé F, et al. High-resolution STEM-HAADF microscopy on aγ-Al2O3 supported MoS2 catalyst—proof of the changes in dispersion and morphology of the slabs with the addition of citric acid[J]. Nanotechnology, 2020,31(3):35706.[28] 张轩, 杨清河, 胡大为. 载体焙烧温度对催化剂加氢降残炭活性的影响[J]. 石油炼制与化工, 2014,45(11):13-17.[29] Liu Z, Han W, Hu D, et al. Effects of Ni–Al2O3 interaction on NiMo/Al2O3 hydrodesulfurization catalysts[J]. journal of catalysis, 2020.[30] Kwak J H, Peden C H F, Szanyi J. Using a Surface-Sensitive Chemical Probe and a Bulk Structure Technique to Monitor the γ- to θ-Al2O3 Phase Transformation[J]. The Journal of Physical Chemistry C, 2011,115(25):12575-12579.[31] Wang X, Zhao Z, Zheng P, et al. Synthesis of NiMo catalysts supported on mesoporous Al2O3 with different crystal forms and superior catalytic performance for the hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene[J]. Journal of Catalysis, 2016,344:680-691.[32] Laurenti D, Phung-Ngoc B, Roukoss C, et al. Intrinsic potential of alumina-supported CoMo catalysts in HDS: Comparison between γc, γT, and δ-alumina[J]. Journal of Catalysis, 2013,297:165-175.[33] Li H, Li M, Nie H. Tailoring the surface characteristic of alumina for preparation of highly active NiMo/Al2O3 hydrodesulfurization catalyst[J]. Microporous and Mesoporous Materials, 2014,188:30-36.[34] 张轩, 杨清河, 胡大为. 载体水热处理时间对催化剂性质及加氢降残炭活性的影响[J]. 石油炼制与化工, 2015,46(07):58-62.[35] 曾双亲, 杨清河, 聂红, 等. 水热处理时间对氧化铝载体及加氢脱硫催化剂性能的影响[J]. 石油学报(石油加工), 2020,36(5):937-943.[36] Li G, Liu Y, Tang Z, et al. Effects of rehydration of alumina on its structural properties, surface acidity, and HDN activity of quinoline[J]. Applied Catalysis A: General, 2012,437-438:79-89.[37] Zhang C, Liu X, Liu T, et al. Optimizing both the CoMo/Al2O3 catalyst and the technology for selectivity enhancement in the hydrodesulfurization of FCC gasoline[J]. Applied Catalysis A: General, 2019,575:187-197.[38] Zhu Y, Ramasse Q M, Brorson M, et al. Visualizing the Stoichiometry of Industrial-Style Co-Mo-S Catalysts with Single-Atom Sensitivity[J]. Angewandte Chemie International Edition, 2014,53(40):10723-10727.[39] Van Haandel L, Bremmer G M, Hensen E J M, et al. Influence of Sulfiding Agent and Pressure on Structure and Performance of CoMo/Al2O3 Hydrodesulfurization Catalysts[J]. J. Catal., 2016,342:27.[40] Dugulan A I, Hensen E J M, van Veen J A R. High-pressure sulfidation of a calcined CoMo/Al2O3 hydrodesulfurization catalyst[J]. Catalysis Today, 2008,130(1):126-134.[41] Chen J, Dominguez Garcia E, Oliviero E, et al. Effect of High Pressure Sulfidation on the Morphology and Reactivity of MoS2 Slabs on MoS2/Al2O3 Catalyst Prepared with Citric Acid[J]. J. Catal., 2016,339:153.[42] Kooyman P J, Buglass J G, Reinhoudt H R, et al. Quasi in Situ Sequential Sulfidation of CoMo/Al2O3 Studied Using High-Resolution Electron Microscopy[J]. The Journal of Physical Chemistry B, 2002,106(45):11795-11799.[43] 倪雪华, 龙湘云, 聂红, 等. 硫化温度对NiW/Al2O3催化剂加氢脱硫性能的影响[J]. 石油学报(石油加工), 2014,30(01):7-14.[44] Dinter N, Rusanen M, Raybaud P, et al. Temperature-programmed reduction of unpromoted MoS2-based hydrodesulfurization catalysts: First-principles kinetic Monte Carlo simulations and comparison with experiments[J]. Journal of Catalysis, 2010,275(1):117-128.[45] Li M, Li H, Jiang F, et al. The relation between morphology of (Co)MoS2 phases and selective hydrodesulfurization for CoMo catalysts[J]. Catalysis Today, 2010,149(1):35-39.[46] Eijsbouts S, Heinerman J J L, Elzerman H J W. MoS2 structures in high-activity hydrotreating catalysts[J]. Applied Catalysis A: General, 1993,105(1):53-68.[47] Alphazan T, Bonduelle-Skrzypczak A, Legens C, et al. Highly Active Nonpromoted Hydrotreating Catalysts through the Controlled Growth of a Supported Hexagonal WS2 Phase[J]. Acs Catalysis, 2014,4(12):4320-4331.[48] Zavala-Sanchez L, Portier X, Maugé F, et al. Formation and stability of CoMoS nanoclusters by the addition of citric acid: A study by high resolution STEM-HAADF microscopy[J]. Catalysis Today, 2021,377:127-134.[49] Ryaboshapka D, Piccolo L, Aouine M, et al. Ultradispersed (Co)Mo catalysts with high hydrodesulfurization activity[J]. Applied Catalysis B: Environmental, 2022,302:120831. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||