[1]李琼. 中国聚氯乙烯下游应用现状及发展趋势[J]. 中国氯碱, 2020, (5):1-4+21.[2]Shen Z, Zhao H, Liu Y, et al. Mercury-free nitrogen-doped activated carbon catalyst: an efficient catalyst for the catalytic coupling reaction of acetylene and ethylene dichloride to synthesize the vinyl chloride monomer[J]. Reaction Chemistry & Engineering, 2018, 3(1): 34-40.[3]Chao S, Zou F, Wan F, et al. Nitrogen-doped carbon derived from ZIF-8 as a high-performance metal-free catalyst for acetylene hydrochlorination[J]. Scientific reports, 2017, 7(1): 1-7.[4]Zhao J, Gu S, Xu X, et al. Supported ionic-liquid-phase-stabilized Au (III) catalyst for acetylene hydrochlorination[J]. Catalysis Science & Technology, 2016, 6(9): 3263-3270.[5]Wang S, Shen B, Song Q. Kinetics of acetylene hydrochlorination over bimetallic Au–Cu/C catalyst[J]. Catalysis letters, 2010, 134(1): 102-109.[6]Zhang H, Dai B, Wang X, et al. Hydrochlorination of acetylene to vinyl chloride monomer over bimetallic Au–La/SAC catalysts[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 49-54.[7]Zhang H, Dai B, Li W, et al. Non-mercury catalytic acetylene hydrochlorination over spherical activated-carbon-supported Au–Co (III)–Cu (II) catalysts[J]. Journal of catalysis, 2014, 316: 141-148.[8]Zhao J, Xu J, Xu J, et al. Activated‐carbon‐supported gold–cesium (I) as highly effective catalysts for hydrochlorination of acetylene to vinyl chloride[J]. ChemPlusChem, 2015, 80(1): 196-201.[9]Zhang H, Li W, Jin Y, et al. Ru-Co (III)-Cu (II)/SAC catalyst for acetylene hydrochlorination[J]. Applied Catalysis B: Environmental, 2016, 189: 56-64.[10]Jin Y, Li G, Zhang J, et al. Effects of potassium additive on the activity of Ru catalyst for acetylene hydrochlorination[J]. RSC Advances, 2015, 5(47): 37774-37779.[11]Shang S, Zhao W, Wang Y, et al. Highly efficient Ru@ IL/AC to substitute mercuric catalyst for acetylene hydrochlorination[J]. ACS Catalysis, 2017, 7(5): 3510-3520.[12]Li Y, Dong Y, Li W, et al. Improvement of imidazolium-based ionic liquids on the activity of ruthenium catalyst for acetylene hydrochlorination[J]. Molecular Catalysis, 2017, 443: 220-227.[13]Li H, Wang F, Cai W, et al. Hydrochlorination of acetylene using supported phosphorus-doped Cu-based catalysts[J]. Catalysis Science & Technology, 2015, 5(12): 5174-5184.[14]Dai B, Chen K, Wang Y, et al. Boron and nitrogen doping in graphene for the catalysis of acetylene hydrochlorination[J]. ACS Catalysis, 2015, 5(4): 2541-2547.[15]Li X, Pan X, Yu L, et al. Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene[J]. Nature communications, 2014, 5(1): 1-7.[16]曾宪谋. 吡啶氯化铜络合物烃化反应的研究[J]. 中国科学, 1980(11):1051-1056.[17]张绪立,王富民,王录. 乙炔氢氯化过程中铜基催化剂的制备及催化性能[J]. 化学工业与工程, 2016, 33(3):19-24.[18]王波,吴广文,祝航,等.乙炔法合成氯乙烯用无汞催化剂[J].工业催化,2020, 28(12):47-50.[19]孙连吉.氯乙烯精单体中高沸物微量杂质的色谱分析[J].聚氯乙烯,1993, (04):29-33.[20]雷醒辉.氯乙烯单体中杂质含量的测定[J].聚氯乙烯,2010,38(12):35-36+40.[21]胡皆汉, 程国宝. 几种金属吡啶络合物红外振动基频的归属和讨论[J]. 光谱学与光谱分析, 1994, 14 (5): 15-18.[22]张齐,鲁树亮,彭晖.原位红外光谱在石油化工催化研究中的应用[J].天然气化工(C1化学与化工),2020,45(6):103-107.[22]Wang B, Yue Y, Jin C, et al. Hydrochlorination of acetylene on single-atom Pd/N-doped carbon catalysts: Importance of pyridinic-N synergism[J]. Applied Catalysis B: Environmental, 2020, 272: 118944.[23]Zhou K, Si J, Jia J, et al. Reactivity enhancement of N-CNTs in green catalysis of C 2 H 2 hydrochlorination by a Cu catalyst[J]. Rsc Advances, 2014, 4(15): 7766-7769.[24]Wang B, Jin C, Shao S, et al. Electron-deficient Cu site catalyzed acetylene hydrochlorination[J]. Green Energy & Environment, 2022.[25]Xu Y, Cheng C, Du S, et al. Contacts between two-and three-dimensional materials: ohmic, Schottky, and p–n heterojunctions[J]. ACS nano, 2016, 10(5): 4895-4919.[26]相博文,王璐,王丰,等.Cu/HY催化剂在乙炔氢氯化反应中的性能及其失活原因[J].应用化学,2018,35(12):1449-1456.[27]Li H, Wang F, Cai W, et al. Hydrochlorination of acetylene using supported phosphorus-doped Cu-based catalysts[J]. Catalysis Science & Technology, 2015, 5(12): 5174-5184.[28]Li J, Zhang H, Li L, et al. Synergistically catalytic hydrochlorination of acetylene over the highly dispersed Ru active species embedded in P-containing ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(27): 10173-10184.[29]王宁,赵基钢,丛梅,等. 乙炔氢氯化Au-Cu/AC催化剂中Cu价态对Au价态稳定性的影响[J]. 化工进展, 2020, 39; (11):173-180.[30]Shen Z, Liu Y, Han Y, et al. Nitrogen-doped porous carbon from biomass with superior catalytic performance for acetylene hydrochlorination[J]. RSC Advances, 2020, 10(25): 14556-14569.[31]Dong C C, Zhang B, Huang G Q,et al. Electrochemical Behavior of Q235 Steel in Brine of Chaerhan Saline Lake[J]. Corrosion ence & Protection Technology, 2011, 23(1): 37-40.[32]Dumbuya K, Cabailh G, Lazzari R, et al. Evidence for an active oxygen species on Au/TiO2 (1 1 0) model catalysts during investigation with in situ X-ray photoelectron spectroscopy[J]. Catalysis today, 2012, 181(1): 20-25.[33]Brennan J K, Bandosz T J, Thomson K T, et al. Water in porous carbons[J]. Colloids and surfaces A: Physicochemical and engineering aspects, 2001, 187: 539-568. |