[1] Knott B C, Nimlos C T, Robichaud D J, et al. Consideration of the aluminum distribution in zeolites in theoretical and experimental catalysis research [J]. ACS Catalysis, 2018, 8 (2): 770-784.[2] Muraoka K, Chaikittisilp W, Yanaba Y, et al. Directing aluminum atoms into energetically favorable tetrahedral sites in a zeolite framework by using organic structure‐directing agents [J]. Angewandte Chemie International Edition, 2018, 57 (14): 3742-3746.[3] 郑健,李强,秦玉才,等. 非骨架铝形态对HY分子筛B酸强度的影响[J]. 石油炼制与化工, 2018, 49(11):66-71.[4] Vermeiren W, Gilson J P. Impact of zeolites on the petroleum and petrochemical industry [J]. Topics in Catalysis, 2009, 52 (9): 1131-1161.[5] Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis [J]. Chemical Reviews, 1997, 97 (6): 2373-2420.[6] Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions [J]. Chemical Reviews, 2002, 95 (3): 559-614.[7] 李慧胜,徐景东,艾子龙,等. 分子筛含量对多产乙烯原料型柴油加氢改质催化剂性能的影响[J]. 石油炼制与化工, 2024, 55(6): 92-98.[8] Janda A, Vlaisavljevich B, Lin L C, et al. Effects of zeolite structural confinement on adsorption thermodynamics and reaction kinetics for monomolecular cracking and dehydrogenation of n-butane [J]. Journal of the American Chemical Society, 2016, 138 (14): 4739-4756.[9] Li C G, Vidal-Moya A, Miguel P J, et al. Selective introduction of acid sites in different confined positions in ZSM-5 and its catalytic implications [J]. Acs Catalysis, 2018, 8 (8): 7688-7697.[10] 张乐,黎玉婷,胡海峰,等. 分子筛在催化脱硫中的研究进展[J]. 工业催化,2024,32(08):1-8.[11] 苏晓芳. ZSM-5分子筛的孔道结构和表面酸性调控及MTG与芳构化催化性能研究[D]. 哈尔滨工程大学, 2020.[12] Al-Khattaf S, Ali S A, Aitani A M, et al. Recent advances in reactions of alkylbenzenes over novel zeolites: The effects of zeolite structure and morphology [J]. Catalysis Reviews, 2014, 56 (4): 333-402.[13] Busca G. Acid catalysts in industrial hydrocarbon chemistry [J]. Chemical Reviews, 2007, 107 (11): 5366-5410.[14] Singhal S, Agarwal S, Arora S, et al. Solid acids: potential catalysts for alkene–isoalkane alkylation [J]. Catalysis Science & Technology, 2017, 7 (24): 5810-5819.[15] Su F, Guo Y. Advancements in solid acid catalysts for biodiesel production [J]. Green Chemistry, 2014, 16 (6): 2934-2957.[16] Rahimi N, Karimzadeh R. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review [J]. Applied Catalysis A: General, 2011, 398 (1-2): 1-17.[17] Opanasenko M V, Roth W J, ?ejka J. Two-dimensional zeolites in catalysis: current status and perspectives [J]. Catalysis Science & Technology, 2016, 6 (8): 2467-2484.[18] Sugi Y, Vinu A. Alkylation of biphenyl over zeolites: shape-selective catalysis in zeolite channels [J]. Catalysis Surveys from Asia, 2015, 19 (3): 188-200.[19] Matias P, Lopes J M, Laforge S, et al. n-Heptane transformation over a HMCM-22 zeolite: Catalytic role of the pore systems [J]. Applied Catalysis A: General, 2008, 351 (2): 174-183.[20] Gutierrez-Acebo E, Rey J, Bouchy C, et al. Location of the active sites for ethylcyclohexane hydroisomerization by ring contraction and expansion in the EUO zeolitic framework [J]. ACS Catalysis, 2019, 9 (3): 1692-1704.[21] Souverijns W, Rombouts L, Martens J A, et al. Molecular shape selectivity of EUO zeolites [J]. Microporous Materials, 1995, 4 (2-3): 123-130.[22] Peral I, Jones C Y, Varkey S P, et al. Structural comparison of two EUO-type zeolitees investigated by neutron diffraction [J]. Microporous and Mesoporous Materials, 2004, 71 (1-3): 125-133.[23] 徐会青,刘全杰,贾立明. 分子筛孔结构和酸性对碳八芳烃异构化反应性能影响[J]. 分子催化, 2012, (3): 252-256.[24] Gao S, Zhu X, Li X, et al. Direct amination of isobutylene over zeolite catalysts with various topologies and acidities [J]. Journal of Energy Chemistry, 2017, 26 (4): 776-782.[25] Briscoe N A, Johnson D W, Shannon M D, et al. The framework topology of zeolite EU-1 [J]. Zeolites, 1988, 8 (1): 74-76.[26] Perdew, Chevary, Vosko, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Physical review. B, Condensed matter, 1992, 46 (11): 6671-6687.[27] Perdew J P, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system [J]. Physical review. B, Condensed matter, 1997, 54 (23): 16533-16539.[28] Jana S, Patra A, Samal P. Gradient approximated exchange energy functionals with improved performances for two-dimensional quantum dot systems [J]. Physica E Low-dimensional Systems and Nanostructures, 2017, 97: 268-276.[29] Hammer B H, Hansen L B, N?rskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J]. Physical review B, 1999, 59 (11): 7413. |