PETROLEUM PROCESSING AND PETROCHEMICALS ›› 2025, Vol. 56 ›› Issue (4): 25-32.
Previous Articles Next Articles
Received:
2024-09-25
Revised:
2024-11-27
Online:
2025-04-12
Published:
2025-04-02
[1]石洪宇, 费华伟, 高振宇, 等.全球原油品质变化趋势及对中国炼油行业的影响[J].世界石油工业, 2020, 27(01):15-20[2]张琛.中国石油安全现状与对策思考[J].中国石油和化工标准与质量, 2023, 43(04):118-120[3]Rafael M-P, María D L M, Beatriz Z-R, et al.Transportation of heavy and extra-heavy crude oil by pipeline: A review[J].Journal of Petroleum Science and Engineering, 2010, 75(3):274-282[4]苏义脑.中国碳达峰碳中和与能源发展战略的认识与思考[J].世界石油工业, 2022, 29(04):7-11[5]李秀娟.国内外稠油资源的分类评价方法[J].内蒙古石油化工, 2008, 34(21):61-62[6]高婷.针对新疆超稠油管道输送的可行性研究[D]. 西安:西安石油大学, 2013.[7]杨勇.胜利油田稠油开发技术新进展及发展方向[J].油气地质与采收率, 2021, 28(06):1-11[8]乔明, 任静, 聂光华.非常规原油的加工利用进展——以委内瑞拉超重原油和加拿大油砂沥青为例[J].石化技术, 2012, 19(04):57-61[9]Ma Chenglong, Hu Changhao, Liu Xingzhou, et al.Characterization and Origin Analysis of Heavy Oil in the Western Sag of the Liaohe Basin[J].ACS omega, 2022, 7(33):28985-28993[10]王宗贤, 郭爱军, 阙国和.辽河渣油热转化和加氢裂化过程中生焦行为的研究.[J].燃料化学学报, 1998, 4(04):39-46[11]Butz T, Oelert H-H.Application of Petroleum Asphaltenes in Cracking under Hydrogen[J].Fuel, 1995, 74(11):1671-1676[12]Ji Shunfeng, Wang Zongxian, Guo Aijun.Determination of Hydrogen Solubility in Heavy Fractions of Crude Oils by a Modified Direct Method[J].Journal of Chemical and Engineering Data: the ACS Journal for Data, 2013, 58(12):3453-3457[13]刘进东.油砂沥青临氢供氢降黏改质研究[D]. 青岛:中国石油大学(华东), 2017.[14]王治卿, 王宗贤.减压渣油供氢剂减黏裂化研究[J].燃料化学学报, 2006, 06(06):745-748[15]Wang Qi, Guo Lei, Wang Zongxian, et al.Hydrogen donor visbreaking of Venezuelan vacuum residue[J].J Fuel Chem Technol, 2012, 40(11):1317-1322[16]王齐, 郭磊, 王宗贤, 等.委内瑞拉减压渣油供氢热转化基础研究[J].燃料化学学报, 2012, 40(11):1317-1322[17]王齐, 王宗贤, 庄士成, 等.劣质渣油热改质与供氢热改质[J].石油学报石油加工, 2014, 30(03):439-445[18]王齐, 王宗贤, 沐宝泉, 等.委内瑞拉常压渣油供氢热转化研究[J].燃料化学学报, 2012, 40(10):1200-1205[19]王齐, 郭磊, 王宗贤, 等.委内瑞拉减渣供氢热转化中沥青质结构变化研究[J].燃料化学学报, 2013, 41(09):1064-1069[20]李振芳, 赵翔鵾, 王宗贤, 等.加拿大油砂沥青常压渣油供氢热裂化改质基础研究[J].石油炼制与化工, 2016, 47(08):53-57[21]郭磊.劣质渣油临氢供氢减黏裂化研究[D]. 青岛:中国石油大学(华东), 2014.[22]Gao Yongrong, Guo Erpeng, Shen Dehuang, et al.Air-SAGD technology for super-heavy oil reservoirs[J].Petrol. Explor. Develop, 2019, 46(1):113-120[23]胡力耀, 桑元龙.原油电脱盐脱水新技术研究和应用进展[J].石化技术, 2018, 25(02):67-67[24]Pedro P, Cauri F, Hugo Z, et al.Aquaconversion technology offers added value to EVenezuela synthetic crude oil production[J].Oil and Gas Journal, 2001, 99(20):79-85[25]Abarasi H, Gary L, Malcolm G, et al.Downhole Heavy Crude Oil Upgrading Using CAPRI: Effect of Steam upon Upgrading and Coke Formation[J].Energy Fuels, 2014, 28(3):1811-1819[26]宋业阳.委内瑞拉劣质重油水热降粘改质研究[D]. 青岛:中国石油大学(华东), 2015.[27]Liu Yin, Bai Fan, Zhu Chunchun, et al.Upgrading of residual oil in sub- and supercritical water: An experimental study[J]. Fuel Processing Technology, 2013, 106281-288.[J].Fuel Processing Technology, 2013, 106(0):281-288[28]Oxana N,F, Anatoly A. V..Hydrogenation of bitumen in situ in supercritical water flow with and without addition of zinc and aluminum[J].[J].The Journal of Supercritical Fluids,, 2012, 72(0):100-110[29]Gao Liang, Liu Yuandong, Wen Langyou, et al.The effect of supercritical water on the hydroconversion of Tahe Residue[J].AIChE Journal, 2010, 56(12):3236-3242[30]Morteza H, Seyed J A, Shohreh F.Deuterium tracing study of unsaturated aliphatics hydrogenation by supercritical water in upgrading heavy oil. Part I: Non-catalytic cracking[J].[J].The Journal of Supercritical Fluids,, 2016, 107(0):278-285.[31]Yu Xu, Valentina M, Cyril A.Chemistry in supercritical fluids for the synthesis of metal nanomaterials[J].[J].Reaction Chemistry Engineering, 2019, 4(12):2030-2054[32]Su Hongcai, Ekkachai K, Wang Defeng, et al.Production of H2 -rich syngas from gasification of unsorted food waste in supercritical water[J]. , , 520-527.[J].Waste Management, 2020, none(102):520-527[33]Zhang Yaning, Li Liqing, Xu Pingfei, et al.Hydrogen production through biomass gasification in supercritical water: A review from exergy aspect[J].International Journal of Hydrogen Energy, 2019, 44(30):15727-15736[34]Olubunmi M ,O, Norbert B..Extraction of oil shales with sub- and near-critical water[J].Fuel Processing Technology, 1995, 45(2):185-185[35]丁勇, 赵立群, 程振民, 等.减压渣油在超临界水中的轻质化[J][J].化学反应工程与工艺, 2005, 05(0):463-467[36]Masato M, Yoshikazu S, Yoshiaki S et al.Effect of supercritical water on upgrading reaction of oil sand bitumen[J].The Journal of Supercritical Fluids, 2010, 55(1):223-231[37]Liu Ying, Bai Fan, Zhu Chunchun, et al.Upgrading of residual oil in sub- and supercritical water: An experimental study.[J].Fuel Processing Technology, 2013, 106(0):281-288[38]Tan Xuecai, Liu Qingkun, Zhu Daoqi, et al.Pyrolysis of heavy oil in the presence of supercritical water: The reaction kinetics in different phases[J].AIChE Journal, 2015, 61(3):857-866[39]刘军.超临界水中重质油的减粘裂化[D]. 上海:华东理工大学, 2018.[40]Cheng Zhenmin, Ding Yong, Zhao Liqun, et al.Effects of Supercritical Water in Vacuum Residue Upgrading[J].Energy Fuels, 2009, 23(6):3178-3183[41]濮劲草.超临界水介入重质油热裂化脱残炭[D]. 上海:华东理工大学, 2020.[42]祁伟岩.超临界水改质重油中脱硫与结焦的机理研究[D]. 天津:天津大学, 2021.[43]汤绪权.超临界流体重质油脱金属[D]. 上海:华东理工大学, 2020.[44]Pradip C M, Wahvudiono, Mitsuru S, et al.Nickel removal from nickel etioporphyrin (Ni-EP) using supercritical water in the absence of catalyst[J].Fuel Processing Technology,, 2012, 104(0):67-72[45]Pradip C M, Wahvudiono, Mitsuru S, et al.Non-catalytic vanadium removal from vanadyl etioporphyrin (VO-EP) using a mixed solvent of supercritical water and toluene: A kinetic study[J].Fuel, 2012, 92(1):288-294[46]Pradip C M, Wahvudiono, Mitsuru S, et al.Nickel removal from nickel-5,10,15,20-tetraphenylporphine using supercritical water in absence of catalyst: A basic study[J].Journal of Hazardous Materials, 2011, 187(1-3):600-603[47]Morteza H, M,S, Asa N, et al.An optimization study on heavy oil upgrading in supercritical water through the response surface methodology (RSM)[J]. , ,-117618.[J].Fuel, 2020, 271(0):117618-117618[48]Richard D, Mikhail A,V, Ameen A. Al-M, et al..Oil dispersed nickel-based catalyst for catalytic upgrading of heavy oil using supercritical water[J]. , , 313[J].Fuel, 2022, 313(0):122702-122702[49]Flora TT. Ng, Sophia K. T..Homogeneous catalysis of water-gas shift reaction in emulsions[J]. 72, Issue 2, 1993, Pages 211-215.[J].Fuel, 1993, 72(2):211-215[50]Flora T.T. Ng,Sophia KT. Activation of water in emulsion for catalytic desulphurization of benzothiophene[J].Fuel, 1992, 71(11):1039-1314[51]Flora T.T. Ng,Milad ICatalytic desulphurization of benzothiophene in an emulsion via in situ generated H2[J].Applied Catalysis A, General, 2000, 200(1-2):243-254[52]刘晨光, FLORA TT. Ng..二苯并噻吩在分散型钼催化剂和原位产生的氢存在下的加氢脱硫Ⅰ. 产物分布和反应网络(英)[J]. , :499-504.[J].催化学报, 1999, 05(20):505-509[53]刘晨光, FLORA TT. Ng..二苯并噻吩在分散型钼催化剂和原位产生的氢存在下的加氢脱硫Ⅱ. 原位氢和分子氢的比较(英)[J].):505-509.[J].催化学报,, 1999, 05(20):505-509[54]刘晨光.二苯并噻吩在分散型钼催化剂和原位产生的氢存在下的加氢脱硫Ⅲ. 催化剂前身物、硫化氢、一氧化碳和水对反应的影响(英[J].催化学报, 1999, 6(1):591-596[55]Cécile N.S,Flora TT. Ng. Hydrodesulfurization of cold lake diesel fraction using dispersed catalysts:Influence of hydroprocess-ing medium and sources of H2[J].Energy Fuels, 1998, 12(3):598-606[56]Lei J, Abdulaziz A, Flora TT. Ng..Effect of Metal Ions on Light Gas Oil Upgrading over Nano Dispersed MoSx Catalysts Using in Situ H2[J]. (3):37-49[J].Nanocatalysis for Fuels and Chemicals ACS Symposium Series, 2012, 3(0):37-49[57]刘贺, 王宗贤, 赵翔鵾, 等.加拿大油砂沥青减压渣油在-作用下的热改质特性研究[J].燃料化学学报, 2018, 46(01):45-53[58]刘贺, 王宗贤, 范士广, 等.一种稠油水热降黏改质强化方法[P]. 山东:CN201710547946.3, 2017-09-05.[59]龚旭, 王宗贤, 刘贺.环烷酸盐对稠油多环芳烃富存水热变换新生氢作用的影响[J].石油炼制与化工, 2018, 49(01):60-64[60]Liu He, Fan Shiguang, Gong Xu, et al.Partial Hydrogenation of Anthracene with In Situ Hydrogen Produced from Water-Gas Shift Reaction over Fe-Based Catalysts[J].Catalysts, 2020, 10(12):1379-1379[61]Fan Shiguang, Shi Junlian, Sun Shengnan, et al.In-situ decontamination of heavy metal containing wastewater from oil refineries into catalyst for polycyclic aromatic hydrocarbons hydrogenation coupled with water-gas shift reaction[J]. Separation and Purification Technology, 2023, 307[J].Separation and Purification Technology, 2023, 307(15):122802-122802[62]Liu He, Fan Shiguang, Wang Jian, et al.Structure-Solubility Relationship of CO Dispersion in Model Hydrocarbon Liquids and Heavy Oil Fractions[J].ACS omega, 2021, 6(36):23317-23328[63]郭爱军, 王峰, 杨颖, 等.一种重油轻度热改质的处理工艺及应用[P]. 山东:CN202311296325.4, 2024-01-26.[64]Cesar O, Antonia H, Iraima R, et al.Upgrading of extra-heavy crude oil by direct use of methane in the presence of water[J].Fuel, 1995, 74(8):1162-1168[65]Cesar O, Eduardo F, Alfredo M, et al.Use of a dispersed molybdenum catalyst and mechanistic studies for upgrading extra-heavy crude oil using methane as source of hydrogen[J].Energy & Fuels, 1998, 12(2):379-385[66]Cesar O, Eduardo F, Alfredo M.Use of a dispersed iron catalyst for upgrading extra-heavy crude oil using methane as source of hydrogen[J].Fuel, 2003, 82(8):887-892[67]李庶峰, 沐宝权, 刘晨光.用甲烷作氢源改质重质油的探索[J]. 石油与天然气化工, 2002, (03):138-139+107.[J].石油与天然气化工, 2002, 31(3):138-139[68]Lou Yang, He Peng, Zhao Lulu, et al.Refinery oil upgrading under methane environment over PdOx/H-ZSM-5: Highly selective olefin cyclization[J]. , , 183396-404.[J].Fuel, 2016, 183(1):396-404[69]He Peng, Zhao Lulu, Song Hua, et al.Bitumen partial upgrading over Mo/ZSM-5 under methane environment: Methane participation investigation[J]. Applied Catalysis B Environmental An International Journal Devoted to Catalytic Science & Its Applications, 2017.[J].Applied Catalysis B: Environmental, 2017, 201(1):438-450[70]Xu Hao, Li Zhaofei, Li Yimeng, et al.The interactive role of methane beyond a reactant in crude oil upgrading[J].Communications Chemistry, 2021, 4(1):152-152[71]Li Zhaofei, Li Yimeng, Xu Hao, et al.Effect of methane presence on catalytic heavy oil partial upgrading[J]. Fuel, 2021, 297.[J].Fuel, 2021, 297(1):120733-120733[72]He Peng, Meng Shijun, Song Yang, et al.Heavy oil catalytic upgrading under methane environment: A small pilot plant evaluation[J]. , 2019, 258116161-116161.[J].Fuel, 2019, 258(15):116161-116161[73]Xu Hao, Song Yang, Zhang Yanyan, et al.Catalytic vacuum residue upgrading under methane: Evaluation of process feasibility, stability and versatility[J]. Fuel, 2022, 309[J].Fuel, 2021, 309(1):122155-122155 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||