›› 2019, Vol. 50 ›› Issue (1): 81-84.

• 分析与评定 • 上一篇    下一篇

减压馏分黏度指数的近红外预测研究

任小甜,田松柏,褚小立,朱新宇   

  1. 中国石化石油化工科学研究院
  • 收稿日期:2018-04-26 修回日期:2018-07-13 出版日期:2019-01-12 发布日期:2019-01-29
  • 通讯作者: 任小甜 E-mail:renxiaotian.ripp@sinopec.com
  • 基金资助:
    国家重点研发计划资助

STUDY ON VISCOSITY INDEX PREDICTION OF VGO BY NEAR INFRARED SPECTROSCOPY

  • Received:2018-04-26 Revised:2018-07-13 Online:2019-01-12 Published:2019-01-29
  • Contact: Ren Xiaotian E-mail:renxiaotian.ripp@sinopec.com

摘要: 为了实现减压馏分油(VGO)黏度指数的快速预测,以70个VGO样品的近红外光谱及黏度指数数据为基础,利用随机森林回归算法建立了黏度指数的近红外预测模型。以随机森林算法中对各特征的重要性度量为依据,通过递归特征消除法对近红外光谱进行波长变量选择。优选出10个波长变量作为模型的输入特征,利用10折交叉验证法确定模型的超参数(回归树数量nt为150和节点分裂的特征数nv为5),构建一个更加稳健的随机森林预测模型。对于7个预测集的样本,其黏度指数的预测标准偏差RMSEP为2.28,决定系数R2为0.98,表明模型具有较高的准确度和泛化能力。

关键词: 减压馏分, 黏度指数, 预测, 近红外光谱, 递归特征消除法, 随机森林算法

Abstract: To obtain the viscosity index of VGO rapidly, a prediction model was established by random forest regression algorithm, based on the near infrared spectroscopy and viscosity index data of 70 representative VGO samples. Based on the importance measurement of each feature in the random forest algorithm, the recursive feature elimination method was used to select wavelength variables in NIR. The more robust model was built by selecting 10 characteristic wavelengths as the input features for the model and determining the hyper parameters (the number of trees in the forest nt of 150, the number of features to consider when splitting nv of 5) by 10-fold cross validation. The prediction standard deviation of 7 new samples is 2.28 with R2 of 0.98, indicating high accuracy and strong generalization ability of this model.

Key words: vacuum gas oil, viscosity index, prediction, near infrared spectroscopy, recursive feature elimination method, random forest algorithm