石油炼制与化工 ›› 2019, Vol. 50 ›› Issue (3): 29-35.

• 基础研究 • 上一篇    下一篇

重质船用燃料油黏度预测模型研究

刘名瑞1,王晓霖1,王海波2,于阳2,王刚1   

  1. 1. 中国石化大连(抚顺)石油化工研究院
    2. 中国石化燃料油销售有限公司辽宁分公司
  • 收稿日期:2018-07-04 修回日期:2018-09-05 出版日期:2019-03-12 发布日期:2019-03-26
  • 通讯作者: 刘名瑞 E-mail:liumingrui.fshy@sinopec.com
  • 基金资助:
     

VISCOSITY PREDICTION MODEL FOR HEAVY MARINE OIL

  1.  
  • Received:2018-07-04 Revised:2018-09-05 Online:2019-03-12 Published:2019-03-26
  • Contact: Liu Mingrui E-mail:liumingrui.fshy@sinopec.com
  • Supported by:
     

摘要: 研究了现有黏度预测模型应用于重质船用燃料油黏度预测的可行性,筛选几种常见的黏度物理模型,进行试验数据对比和最优模型选取,基于重质船用燃料油数据库对Cragoe模型进行修正,并结合掺稀降黏试验数据分析混合机制对预测模型相对误差的影响。结果表明,针对目前市场上常用的重质船用燃料油调合组分,采用Cragoe黏度模型进行预测误差较小。这是由于Cragoe黏度模型的预测不受组分油黏度比的限制,在重质船用燃料油中的适用性最好。采用所提出的修正模型,可进一步降低对重质船用燃料油黏度预测的误差。分析多组分调合的结果显示,若组分中的黏度呈梯度分布时可降低预测误差。另外,渣油与稀组分油(简称稀油)调合时,沥青质的络合效应在一定程度上会影响模型的预测准确性。

关键词: 船用燃料油, 黏度, 预测模型, 逻辑模型

Abstract: The feasibility to predict the viscosity of heavy marine fuel oil using the existing viscosity prediction models was studied. Several common viscosity physical models were compared and selected the best one based on the analysis of experimental data. The Cragoe model was modified based on the heavy marine fuel oil database and the viscosity reduction data by dilution, the impact of the blending mechanism on the relative error of the prediction model was analyzed. The results showed that for the heavy fuel oil blending components commonly used in the current market, the Cragoe viscosity model has minor prediction errors due to the fact that the Cragoe viscosity prediction model is not limited by the viscosity ratio of the component oils, and is the best model suited for heavy marine fuel oils. The proposed correction model can further reduce the error in predicting the viscosity of heavy marine fuel oil. The analysis of multi-component blending results showed that if the profile of the viscosities distribution of the components is in a gradient form, the prediction error can be reduced. In addition, when the residual oil and dilute components are blended, the complexing effect of asphaltenes affects the prediction accuracy of the model to some extent.

Key words: marine fuel oil, viscosity, prediction model, logic model

中图分类号: