[1] 董晓杨, 赵浩, 冯毅萍, 荣冈. 基于流程模拟的常减压装置过程操作与生产计划集成优化[J]. 化工学报, 2015, 66(01): 237-243.
[2] Raimondi A, Favela-Contreras A, Beltran-Carbajal F, Pinon-Rubio A, De La Pena-Elizondo J L. Design of an adaptive predictive control strategy for crude oil atmospheric distillation process[J]. Control Engineering Practice, 2015, 34: 39-48.
[3] 李秀芝. 常减压装置稳态模拟及改进的建模方法[J]. 计算机与应用化学, 2015, 32(05): 619-622.
[4] Chang A F, Liu Y A. Predictive Modeling of Large-Scale Integrated Refinery Reaction and Fractionation Systems from Plant Data. Part 1: Hydrocracking Processes[J]. Energy & Fuels, 2011, 25(11): 5264-5297.
[5] Pashikanti K, Liu Y A. Predictive Modeling of Large-Scale Integrated Refinery Reaction and Fractionation Systems from Plant Data. Part 2: Fluid Catalytic Cracking (FCC) Process[J]. Energy & Fuels, 2011, 25(11): 5298-5319.
[6] Pashikanti K, Liu Y A. Predictive Modeling of Large-Scale Integrated Refinery Reaction and Fractionation Systems from Plant Data. Part 3: Continuous Catalyst Regeneration (CCR) Reforming Process[J]. Energy & Fuels, 2011, 25(11): 5320-5344.
[7] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[8] Sadighi S, Mohaddecy R S, Norouzian A. Optimizing an Industrial Scale Naphtha Catalytic Reforming Plant Using a Hybrid Artificial Neural Network and Genetic Algorithm Technique[J]. Bulletin of Chemical Reaction Engineering and Catalysis, 2015, 10(2): 210-220.
[9] Venter G, Sobieszczanski-Sobieski J. Particle swarm optimization[J]. Aiaa Journal, 2003, 41(8): 1583-1589.
[10] Yu H B, Tan Y C, Zeng J, Sun C L, Jin Y C. Surrogate-assisted hierarchical particle swarm optimization[J]. Information Sciences, 2018, 454(7): 59-72.
[11] 朱颢东, 钟勇. 一种改进的模拟退火算法[J]. 计算机技术与发展, 2009, 19(06): 32-35.
[12] Storn R, Price K. Differential Evolution - A Simple and Efficient Heuristic for global Optimization over Continuous Spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
[13] Wang Y, Yin D Q, Yang S X, Sun G Y. Global and Local Surrogate-Assisted Differential Evolution for Expensive Constrained Optimization Problems with Inequality Constraints[J]. IEEE Transactions on Cybernetics, 2019, 49(5): 1642-1656.
[14] 周明, 孙树栋, 彭炎午. 基于遗传模拟退火算法的机器人路径规划[J]. 航空学报, 1998, (01): 119-121.
[15] Zhang P, Chen H, Liu X, Zhang Z. An iterative multi-objective particle swarm optimization-based control vector parameterization for state constrained chemical and biochemical engineering problems[J]. Biochemical Engineering Journal, 2015, 103: 138-151.
[16] 何东海, 祁荣宾, 钱锋. 基于Kriging代理模型的序列优化[J]. 计算机与应用化学, 2014, 31(11): 1323-1328.
[17] 段星辰, 杜文莉. 基于bootstrap GEI算法的碳二加氢反应器代理模型 [J]. 化工学报, 2015, 66(12): 4904-4909.
[18] 刘宽, 王铁刚, 曹祖宾, 王莉. 化工流程模拟软件的介绍与对比[J]. 当代化工, 2013, (11): 1550-1553.
[19] 张兴, 袁飞. 轻烃蒸汽转化制氢HYSYS软件全流程模拟[J]. 当代化工, 2017, (03): 546-549.
[20] 王钧炎, 黄德先. 基于差分进化算法和HYSYS机理模型的催化重整过程优化[J]. 化工学报, 2008, (07): 1755-1760.
[21] 柏杨进, 薄翠梅, 丁良辉, 乔旭, 张公民. 运用HYSYS对背包式反应精馏过程控制的仿真[J]. 化工自动化及仪表, 2011, (06): 679-681+688.
[22] 王钧炎, 黄德先. 基于HYSYS的催化重整流程模拟及其应用[J]. 计算机与应用化学, 2007, (10): 1302-1306.
[23] 于晓栋, 吕文祥, 黄德先, 金以慧. 基于HYSYS和NSGA-Ⅱ的常压塔多目标优化[J]. 化工学报, 2008, (07): 1646-1649.
[24] Krige D G. A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand[J]. Journal of the Chemical, Metallurgical and Mining Society of South Africa, 1951, 52(6): 119-139.
[25] Zhou J, Su X, Cui G. An adaptive Kriging surrogate method for efficient joint estimation of hydraulic and biochemical parameters in reactive transport modeling[J]. Journal of Contaminant Hydrology, 2018, 216: 50-57.
[26] Wu C D, Zeng Y T, Lung S C C. A hybrid kriging/land-use regression model to assess PM2.5 spatial-temporal variability[J]. Science of the Total Environment, 2018, 645: 1456-1464.
[27] 乔成, 钟伟民, 范琛. 基于偏最小二乘的Kriging代理模型在加氢裂化建模中的应用[J]. 华东理工大学学报(自然科学版), 2017, (03): 383-388+396.
[28] 柳强, 焦国帅. 基于Kriging模型和NSGA-II的航空发动机管路卡箍布局优化[J]. 智能系统学报, 2019, (02): 1-7.
[29] 石博文, 尹燕燕, 刘飞. 基于PSO-控制变量参数化混合策略的间歇化工过程优化控制[J]. 化工学报, 2019, 70(03): 979-986.
[30] Jiang Y, Hu T, Huang C, Wu X. An improved particle swarm optimization algorithm[J]. Applied Mathematics and Computation, 2007, 193(1): 231-239.
|