石油炼制与化工 ›› 2020, Vol. 51 ›› Issue (1): 114-120.

• 优化与控制 • 上一篇    

基于Kriging代理模型的复杂精馏系统操作参数优化

刘思乐1,王修纲2,吴静1,3,李德豹1   

  1. 1. 沈阳科技学院化学工程系
    2. 上海交通大学化学化工学院
    3. 沈阳化工大学化学工程学院
  • 收稿日期:2019-07-02 修回日期:2019-10-08 出版日期:2020-01-12 发布日期:2020-01-19
  • 通讯作者: 刘思乐 E-mail:sl.0117@163.com
  • 基金资助:
     

OPERATION PARAMETER OPTIMIZATION OF COMPLEX DISTILLATION SYSTEM BASED ON KRIGING SURROGATE

    

  1.  
  • Received:2019-07-02 Revised:2019-10-08 Online:2020-01-12 Published:2020-01-19
  • Supported by:
     

摘要: 优化常减压装置的操作参数可有效提升炼化企业的经济效益,但基于其严格机理模型进行迭代寻优将十分耗时。为降低计算成本,提出了一种基于Kriging代理模型的常压精馏系统操作参数智能优化方法。该方法采用Kriging元建模技术构造精馏过程中关键操作参数与主要输出变量间的关系模型,并以此关系模型代理复杂精馏系统的MESH方程组(包括物料守恒方程M、气液平衡方程E、归一方程S、焓守恒方程H),在设计空间中采用粒子群优化(PSO)算法进行操作参数的全局智能搜索。所提方法不仅能够保证寻找到的操作参数全局最优,而且可以大幅度地减少求解的时间,具有十分明显的工程实用性。基于Aspen HYSYS的仿真试验表明了本文所提方法的有效性和优越性。

关键词: 复杂精馏系统, 常压蒸馏系统, Kriging 代理模型, 粒子群优化

Abstract: Optimizing the operation parameters of atmospheric and vacuum distillation units can effectively improve the economic benefits of refineries,but it would be time-consuming if the optimization process was iteratively conducted with their rigorous mechanism model. In order to reduce the computational cost,Kriging surrogate-based intelligent method is proposed to optimize the operation parameters of an atmospheric distillation system in this paper. In detail,Kriging meta-modeling technology is adopted to construct the relationship model between some key operation parameters and output variables for the distillation process,and then the relationship model is used to represent the MESH equations of the complex distillation system. Moreover,employing particle swarm optimization (PSO) algorithm in the design space to conduct global intelligent search of operation parameters. The proposed method can not only ensure the global optimization of the operation parameters,but also greatly reduce the computing time when solving the problems. Simulation results, using Aspen HYSYS, shows the effectiveness and superiority of our method and confirms its obvious engineering practicability.

Key words: complex distillation system, atmospheric distillation system, Kriging surrogate model, particle swarm optimization

中图分类号: