›› 2020, Vol. 51 ›› Issue (10): 100-105.

• 控制与优化 • 上一篇    下一篇

PSO-SVR-RSM在加氢反应器气液分配器结构优化中的应用

李立毅,张玮,延会波,翟剑,韩念琛   

  1. 太原理工大学化学化工学院
  • 收稿日期:2020-02-20 修回日期:2020-06-28 出版日期:2020-10-12 发布日期:2020-10-27
  • 通讯作者: 韩念琛 E-mail:1194846792@qq.com
  • 基金资助:
    国家重点研发计划项目;山西省重点研发计划项目;山西省重大科技专项

APPLICATION OF PSO-SVR-RSM METHOD IN STRUCTURE OPTIMIZATION OF GAS-LIQUID DISTRIBUTOR OF HYDROGENATION REACTOR

  • Received:2020-02-20 Revised:2020-06-28 Online:2020-10-12 Published:2020-10-27

摘要: 针对计算流体力学(CFD)在滴流床气液分配器结构设计优化时速度慢和计算时间成本高等缺点,选择支持向量回归(SVR)模型作为代理模型用于预测输出。为了获得快速准确的SVR模型,采用粒子群优化(PSO)算法来优化SVR的参数,包括惩罚系数C、核函数的参数g和不敏感损失系数ε。以PSO-SVR混合模型为数据源,结合响应面法(RSM)计算出与最小液体分布不均匀度相对应的结构参数。CFD结果与RSM法预测值显示出良好的一致性,液体分布不均匀度分别为0.159和0.162。提出的混合PSO-SVR-RSM方法为指导滴流床中气液分配器的优化设计提供了有效的工具。

关键词: 气液分配器, 支持向量回归, 粒子群, 响应面法, 计算流体力学

Abstract: CFD in designing and optimizing the structure of the trickle bed gas-liquid distributor have the disadvantages of the slow speed and high calculation time cost. In this paper, we selected the support vector regression machine (SVR) model as the proxy model for prediction. In order to obtain a fast and accurate SVR model, the particle swarm optimization (PSO) algorithm was used to optimize the parameters of support vector regression (SVR), including the penalty coefficient C, the parameter g of the kernel function, and the insensitive loss coefficient ε. Then, using the PSO-SVR hybrid model as the data source coupled with the response surface method (RSM), the structural parameters corresponding to the minimum liquid uneven distribution were calculated. The CFD results showed good agreement with the values predicted by the response surface method, and the liquid distribution unevenness was 0.159 and 0.162, respectively. The research shows that the hybrid PSO-SVR-RSM method provides an effective tool for guiding the optimal design of gas-liquid distributors in trickle beds.

Key words: gas-liquid distributor, support vector regression, particle swarm, response surface methodology, CFD