石油炼制与化工 ›› 2020, Vol. 51 ›› Issue (12): 69-75.

• 基础研究 • 上一篇    下一篇

基于随机森林回归的汽油研究法辛烷值预测

郑斌1,孙洪霞2,王维民1   

  1. 1. 中国石化销售股份有限公司
    2. 天睿信科技术(北京)有限公司
  • 收稿日期:2020-04-28 修回日期:2020-08-26 出版日期:2020-12-12 发布日期:2020-12-29
  • 通讯作者: 郑斌 E-mail:zhengb@sinopec.com
  • 基金资助:
     

PREDICTION OF GASOLINE RESEARCH OCTANE NUMBER BASED ON RANDOM FOREST REGRESSION

    

  1.  
  • Received:2020-04-28 Revised:2020-08-26 Online:2020-12-12 Published:2020-12-29
  • Supported by:
     

摘要: 针对成品油销售企业汽油辛烷值检测难的问题,提出了一种基于随机森林回归算法的研究法辛烷值(RON)预测方法。该方法基于成品油质量数据库中的实测数据,以汽油烯烃含量、芳烃含量、氧含量、馏程(10%,50%,90%馏出温度及终馏点)和密度作为自变量,研究法辛烷值作为因变量,分别建立92号汽油、95号汽油和(92号+95号)汽油的随机森林回归模型。结果表明,92号模型和95号模型的预测精度更高,两个模型的决定系数均达到0.95以上。应用这两个模型进行汽油RON预测,油品质量升级后,模型仍然保持了较高的精度,可靠性和适应性较好。与中红外光谱检测方法相比,随机森林回归模型超过84%的预测结果的绝对误差不大于0.7个单位,精度显著优于中红外光谱检测方法。该预测方法能够为销售企业汽油辛烷值的质量监控提供有益帮助。

关键词: 汽油, 研究法辛烷值, 随机森林, 回归, 预测

Abstract: Aiming at the detection difficulty of gasoline Research Octane Number (RON) in fuel sales enterprises, a RON prediction method based on random forest regression algorithm was proposed. Based on the fuel quality database, with gasoline olefin content, aromatic content, oxygen content, distillation range (T10, T50, T90 and FBP) and density as independent variables and RON value as the dependent variable, the random forest regression prediction models of NO.92 gasoline, NO.95 gasoline and ( NO.92+ NO.95) gasoline were established. The results showed that the prediction accuracy of models for the NO.92 and the NO.95 gasoline was better, and the coefficient of determination (R2) of the two models both reaches 0.95. After the fuel quality upgraded, the prediction models maintained high accuracy, reliability, and adaptability. Compared with the mid-infrared spectral detection method, the absolute error of more than 84% prediction results of the random forest regression model was less than 0.7, and its accuracy was significantly better than that of the mid-infrared spectral detection method. This prediction model can be helpful for the quality monitoring of gasoline RON of fuel sales enterprises.

Key words: gasoline, research octane number, random forest, regression, prediction

中图分类号: