参考文献 [1] Monama W, Mohiuddin E, Thangaraj B, et al. Oligomerization of lower olefins to fuel range hydrocarbons over texturally enhanced ZSM-5 catalyst[J]. Catalysis Today, 2020, 342: 167-177 [2] Malaika A, Rechnia-Gor?cy P, Kot M, et al. Selective and efficient dimerization of isobutene over H3PO4 /activated carbon catalysts[J]. Catalysis Today, 2018, 301: 266-273 [3] 中国石化石油化工科学研究院科研处. 中国石化石油化工科学研究院开发的选择性叠合技术工业应用成功[J]. 石油炼制与化工, 2018, 49(9): 15 [4] Egloff G. Polymer gasoline[J]. Industrial and Engineering Chemistry, 1936, 28(12): 1461-1467 [5] Egloff G, Wilson E. Thermal reactions of gaseous hydrocarbons[J]. Industrial and Engineering Chemistry, 1935, 27(8): 917-933 [6] Ipatieff V N, Schaad R E. Heptenes and heptanes from propylene and butylenes[J]. Industrial and Engineering Chemistry, 1945, 37(4): 362-364 [7] Ipatieff V N, Corson B B, Egloff G. Polymerization, a new source of gasoline[J]. Industrial and Engineering Chemistry, 1935, 27(9): 1077-1081 [8] Chang C D. The New Zealand gas-to-gasoline plant: an engineering tour de force[J]. Catalysis Today, 1992, 13: 103-111 [9] Nicholas C P. Applications of light olefin oligomerization to the production of fuels and chemicals[J]. Applied Catalysis A: General, 2017, 543: 82-97 [10] 何奕工, 舒兴田, 龙军. 正碳离子和相关的反应机理[J]. 石油学报(石油加工), 2007, 23(4): 1-7 [11] Ipatieff V N. Catalytic polymerization of gaseous olefins by liquid phosphoric acid[J]. Industrial and Engineering Chemistry, 1935, 27(9): 1067-1069 [12] 张然, 李天舒, 张彦,等. FCC汽油降烯烃工艺及催化剂研究进展[J]. 工业催化, 2019, 27(11): 12-19 [13] Dry M E. Present and future applications of the Fischer–Tropsch process[J]. Applied Catalysis A: General, 2004, 276: 1-3 [14] Klerk A d, Leckel D O, Prinsloo N M. Butene oligomerization by phosphoric acid catalysis: separating the effects of temperature and catalyst hydration on product selectivity[J]. Industrial & Engineering Chemistry Research, 2006, 45: 6127-6136 [15] Nicholas C P, Laipert L, Prabhakar S. Oligomerization of light olefins to gasoline: an advanced NMR characterization of liquid products[J]. Industrial & Engineering Chemistry Research, 2016, 55: 9140-9146 [16] Godsmark J S, Mathys G M K, Hamilton P, et al. Oligomerisation of Olefins[P]. US 20110124827 A1, 2011-05-26 [17] Brown S H, Godsmark J S, Mathys G M K. Olefin Oligomerization Process[P]. US008716542B2, 2014-05-06 [18] 李林, 陈允玺. 催化裂化轻汽油醚化技术的工业应用[J]. 炼油技术与工程, 2014, 44(4): 17-20 [19] Honkela M L, Krause A O. Influence of linear butenes in the dimerization of isobutene[J]. Industrial & Engineering Chemistry Research, 2005, 44: 5291-5297 [20] Quann R J, Green L A, Tabak S A, et al. Chemistry of olefin oligomerization over ZSM-5 catalyst[J]. Industrial & Engineering Chemistry Research, 1988, 27: 565-570 [21] Popov A G, Pavlov V S, Ivanova I I. Effect of crystal size on butenes oligomerization over MFI catalysts[J]. Journal of Catalysis, 2016, 335: 155-164 [22] 翟云平, 李明罡, 罗一斌. ZSM-5分子筛催化1-己烯叠合反应的研究[J]. 石油炼制与化工, 2015, 46(9): 7-9 [23] Corma A, Martínez C, Doskocil E. Designing MFI-based catalysts with improved catalyst life for oligomerization to high-quality liquid fuels[J]. Journal of Catalysis, 2013, 300: 183-196 [24] Li C, Du J, Wang H, et al. A hemicellulose modified HZSM-5 and their application in the light olefins oligomerization to high-quality liquid fuels reaction[J]. Catalysis Communications, 2017, 102: 89-92 [25] Mlinar A N, Zimmerman P M, Celik F E, e. al. Effects of Br?nsted-acid site proximity on the oligomerization of propene in H-MFI[J]. Journal of Catalysis, 2012, 288: 65-73 [26] Henry M, Bulut M, Vermandel W, et al. Low temperature conversion of linear C4 olefins with acid ZSM-5 zeolites of homogeneous composition[J]. Applied Catalysis A: General, 2012, 413-414: 62-77 [27] Wilshier K G, Smart P, Western R, et al. Oligomerization of propene over H-ZSM-5 zeolite[J]. Applied Catalysis, 1987, 31: 339-359 [28] Chen C S H, Bridger R F. Shape-selective oligomerization of alkenes to near-linear hydrocarbons by zeolite catalysis[J]. Journal of Catalysis, 1996, 161: 687-693 [29] Borges P, Pinto R R, Lemos M A N D A, et al. Light olefin transformation over ZSM-5 zeolites: a kinetic model for olefin consumption[J]. Applied Catalysis A: General, 2007, 324: 20-29 [30] Bellussi G, Mizia F, Calemma V, et al. Oligomerization of olefins from light cracking naphtha over zeolite-based catalyst for the production of high quality diesel fuel[J]. Microporous and Mesoporous Materials, 2012: 164: 127-134 [31] Schmidt R, Welch M B, Randolph B B. Oligomerization of C5 olefins in light catalytic naphtha[J]. Energy & Fuels, 2008, 22: 1148-1155 [32] Yu Z, Han Y, Zhao L, et al. Intergrown new zeolite beta polymorphs with interconnected 12-ring channels solved by combining electron crystallography and single-crystal X-ray diffraction[J]. Chemistry of Materials, 2012, 24: 3701-3706 [33] Wulfers M J, Lobo R F. Assessment of mass transfer limitations in oligomerization of butene at high pressure on H-beta[J]. Applied Catalysis A: General, 2015, 505: 394-401 [34] Kulkarni A, Kumar A, Goldman A S, et al. Selectivity for dimers in pentene oligomerization over acid zeolites[J]. Catalysis Communications, 2016, 75: 98-102 [35] Martens J A, Ravishankar R, Mishin I E, et al. Tailored alkene oligomerization with H-ZSM-57 zeolite[J]. Angew. Chem. Int. Ed., 2000, 39(23): 4376-4379 [36] Roth W J, Dorset D L, Kennedy G J. Discovery of new MWW family zeolite EMM-10: identification of EMM-10P as the missing MWW precursor with disordered layers[J]. Microporous and Mesoporous Materials, 2011, 142: 168-177 [37] Kojima M, Rautenbach M W, O'Connor C T. Butene oligomerization over ion-exchanged mordenite[J]. Industrial & Engineering Chemistry Research, 1988, 27: 248-252 [38] Kim Y T, Chada J P, Xu Z, et al. Low-temperature oligomerization of 1-butene with H-ferrierite[J]. Journal of Catalysis, 2015, 323: 33-44 [39] Pater J P G, Jacobs P A, Martens J A. Oligomerization of hex-1-ene over acidic aluminosilicate zeolites, MCM-41, and silica-alumina co-gel catalysts: a comparative study[J]. Journal of Catalysis, 1999, 184: 262-267 [40] Nicholas C P, Nemeth L T, Plencner W M, et al. Elucidation of phosphorus interaction in dual component zeolite/matrix catalysts: Selectivity control in olefin oligomerization with MTW/Al2O3[J]. Applied Catalysis A: General, 2017, 536: 75-84 [41] Martens J A, Verrelst W H, Mathys G M, et al. Tailored catalytic propene trimerization over acidic zeolites with tubular pores[J]. Angew. Chem. Int. Ed., 2005, 44: 5687-5690 [42] Pater J P G, Jacobs P A, Martens J A. 1-hexene oligomerization in liquid, vapor, and supercritical phases over beidellite and ultrastable Y zeolite catalysts[J]. Journal of Catalysis, 1998, 179: 477-482 [43] Yadav G D, Doshi N S. Development of a green process for poly-α-olefin based lubricants[J]. Green Chemistry, 2002, 4: 528-540 [44] Occelli M L, Hsu J T, Galya L G. Propylene oligomerization with pillared clays[J]. Journal of molecular Catalysis, 1985, 33: 371-389 [45] Lee J S, Yoon J W, Halligudi S B, et al. Trimerization of isobutene over WOx/ZrO2 catalysts[J]. Applied Catalysis A: General, 2009, 366: 299-303 [46] Zhang J, Ohnishi R, Okuhara T, et al. Preferential oligomerization of isobutene in mixtures of isobutene and 1-butene over 12-tungstosilicic acid supported on silica[J]. Applied Catalysis A: General, 2009, 353: 68-73 [47] Yang S, Liu Z, Meng X. Oligomerization of isobutene catalyzed by iron(III) chloride ionic liquids[J]. Energy & Fuels, 2009, 23: 70-73 [48] Gu Y, Shi F, Deng Y. SO3H-functionalized ionic liquid as efficient, green and reusable acidic catalyst system for oligomerization of olefins[J]. Catalysis Communications, 2003, 4: 597-601 [49] Finiels A, Fajula F, Hulea V. Nickel-based solid catalysts for ethylene oligomerization – a review[J]. Catalysis Science & Technology, 2014, 4: 2412-2426 [50] Andrews J, Bonnifay P. The IFP dimersol process for dimerization of propylene into isohexenes[J]. 1977, 55: 328-340 [51] Nicolaides C P, Scurrell M S, Semano P M. Nickel silica-alumina catalysts for ethene oligomerization—control of the selectivity to 1-alkene products[J]. Applied Catalysis A: General, 2003, 245: 43-53 [52] Krupa S L, Freet C D, Shakur M. Apparatus and process for oligomerizing one or more hydrocarbons[P]. WO 2012/078579 A2, 2010-12-10 [53] Lallemand M, Finiels A, Fajula F, et al. Nature of the active sites in ethylene oligomerization catalyzed by Ni-containing molecular sieves: chemical and IR spectral investigation[J]. Journal of Physical Chemistry C, 2009, 113(47): 20360-20364 [54] Lallemand M, Rusu O A, Dumitriu E, et al. Ni-MCM-36 and Ni-MCM-22 catalysts for the ethylene oligomerization[C]. Zeolites and Related Materials: Trends, Targets, and Challenges Proceedings of 4th International FEZA Conference, 2008. 1139-1142 [55] Martínez A, Arribas M A, Concepción P, et al. New bifunctional Ni–H-beta catalysts for the heterogeneous oligomerization of ethylene[J]. Applied Catalysis A: General, 2013, 467: 509-518 [56] Peng Y, Dong M, Meng X, et al. Light FCC gasoline olefin oligomerization over a magnetic NiSO4/γ-Al2O3 catalyst in a magnetically stabilized bed[J]. AIChE, 2009, 55(3): 717-725 [57] Tzompantzi F, Mantilla A, Angel G D, et al. NiO–W2O3/Al2O3 catalysts for the production of ecological gasoline: effect of both NiO and the preparation method on the isobutene oligomerization selectivity[J]. Catalysis Today, 2009, 143: 132-136 |