[1] Gang Y, Pan F, Fei Y, et al. Highly efficient nickel, iron, and nitrogen codoped carbon catalysts derived from industrial waste petroleum coke for electrochemical CO2 reduction [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(23): 8840-8847[2] Lee, D H, Choi J, Oh Y S, et al. Catalytic hydrogenation-assisted preparation of melt spinnable pitches from petroleum residue for making mesophase pitch based carbon fibers [J]. Carbon Letters, 2017, 24(1): 28-35[3] Liu, M, Wei F, Yang X, et al. Synthesis of porous graphene-like carbon materials for high-performance supercapacitors from petroleum pitch using nano-CaCO3 as a template [J]. New Carbon Materials, 2018, 33(4): 316-323[4] Seo S W, Choi Y J, Kim J H, et al. Micropore-structured activated carbon prepared by waste PET/petroleum-based pitch [J]. Carbon Letters, 2019, 29(4): 385-392[5] Lee S M, Lee S H, Jung D H. Surface oxidation of petroleum pitch to improve mesopore ratio and specific surface area of activated carbon [J]. Scientific Reports, 2021, 11(1): 1460[6] 李同起, 王成扬. 碳质中间相形成机理研究 [J]. 新型炭材料, 2005, 3: 278-285[7] Ko S, Choi J E, Lee C W, et al. Preparation of petroleum-based mesophase pitch toward cost-competitive high-performance carbon fibers [J]. Carbon Letters, 2020, 30(1): 35-44[8] Sieira P, de Souza Mendes P R, Castro A, et al. Impact of spinning conditions on the diameter and tensile properties of mesophase petroleum pitch carbon fibers using design of experiments [J]. Materials Letters, 2021, 285: 12910[9] Guo J, Li X, Xu H, et al. Molecular structure control in mesophase pitch via Co-carbonization of coal tar pitch and petroleum pitch for production of carbon fibers with both high mechanical properties and thermal conductivity [J]. Energy & Fuels, 2020, 34(5): 6474-6482[10] Cho J H, Im J S, Kim M I, et al. Preparation of petroleum-based binder pitch for manufacturing thermally conductive carbon molded body and comparison with commercial coal-based binder pitch [J]. Carbon Letters, 2020, 30(4): 373-379[11] Niu P, Wang Y, Zhan L, et al. Electrochemical performance of needle coke and pitch coke used as anode material for li-ion battery [J]. Journal of Materials Science and Engineering, 2011, 29(2): 204-209[12] Navarro Quirant P, Cuadrado-Collados C, Romero-Anaya A J, et al. Preparation of porous carbons from petroleum pitch and polyaniline by thermal treatment for methane storage [J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 5775-5785[13] Kim J H, Choi Y J, Im J S, et al. Study of activation mechanism for dual model pore structured carbon based on effects of molecular weight of petroleum pitch [J]. Journal of Industrial and Engineering Chemistry, 2020, 88: 251-259[14] Brooks J D, Taylar G H. The formation of graphitizing carbons from the liquid phase [J]. Carbon, 1965, 3(2): 185-193[15] Yoon S H, Korai Y, Mochida I. Pleat structure of the mesophase pitch-based carbon fiber [J]. Carbon, 1994, 32(6): 1182-1186[16] Yoon S H, Korai Y, Mochida I, et al. Axial nano-scale microstructures in graphitized fibers inherited from liquid crystal mesophase pitch [J]. Carbon, 1996, 34(1): 83-88[17] Wang Y G, Egashira M, Ishida S, et al. Microstructure of mesocarbon microbeads prepared from synthetic isotropic naphthalene pitch in the presence of carbon black [J]. Carbon, 1999, 37(2): 307-314[18] 李同起. 碳质中间相结构的形成及其相关材料的应用研究 [D]. 天津:天津大学博士学位论文, 2005[19] 于银萍, 赵亚楠, 李宝嵩, 等. 中间相炭微球的研究进展 [J]. 炭素, 2020, 3: 38-42+47[20] Ning H, Zhao Q, Zhang H, et al. Application of petroleum asphalt-based carbon materials in electrochemical energy storage [J]. SCIENTIA SINICA Chimica, 2018, 48(4): 329-341[21] Abudu P, Wang L, Xu M, et al. Hierarchical porous carbon materials derived from petroleum pitch for high-performance supercapacitors [J]. Chemical Physics Letters, 2018, 702: 1-7[22] 杨旺, 李瑞, 候利强, 等. 石油沥青基富氮/硫掺杂多孔炭材料的制备及其对电极性能 [J]. 新型炭材料, 2020, 35(3): 253-261[23] Li J, Jia Y, Wang W, et al. Fabrication of new ordered mesoporous carbons from petroleum pitch by triblock copolymer direct templating method [J]. Journal of Porous Materials, 2018, 25(3): 771-777[24] Kim B H, Kim J H, Kin J G, et al. Controlling the electrochemical properties of an anode prepared from pitch-based soft carbon for Li-ion batteries [J]. Journal of Industrial and Engineering Chemistry, 2017, 45: 99-104[25] Wenzel S, Hara T, Janek J, et al. Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies [J]. Energy & Environmental Science, 2011, 4(9): 3342-3345[26] 董伟, 杨绍斌, 沈丁, 等. 石油沥青和葡萄糖热解炭的可逆储钠性能研究 [J]. 新型炭材料, 2017, 32(3): 227-233[27] Li Y, Mu L, Hu Y S, et al. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries [J]. Energy Storage Materials, 2016, 2: 139-145[28] Li Y M, Hu Y S, Li H, et al. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries [J]. Journal of Materials Chemistry A, 2016, 4(1): 96-104[29] Daher N, Huo D, Davoisne C, et al. Impact of preoxidation treatments on performances of pitch-based hard carbons for sodium-ion batteries [J]. ACS Applied Energy Materials, 2020, 3(7): 6501-6510[30] Jian Z, Luo W, Ji X. Carbon electrodes for K-ion batteries [J]. Journal of the American Chemical Society, 2015, 137(36): 11566-11569[31] Zhao J, Zou X, Zhu Y, et al. Electrochemical intercalation of potassium into graphite [J]. Advanced Functional Materials, 2016, 26(44): 8103-8110[32] Liang H J, Hou B H, Li W H, et al. Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: in operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries [J]. Energy & Environmental Science, 2019, 12(12): 3575-3584[33] Liu Y, Lu Y X, Xu Y S, et al. Pitch-derived soft carbon as stable anode material for potassium ion batteries [J]. Advanced Materials, 2020, 32(17): e2000505[34] Tan H, Du X, Zhou R, et al. Rational design of microstructure and interphase enables high-capacity and long-life carbon anodes for potassium ion batteries [J]. Carbon, 2021, 176: 383-389[35] Sun Q, Li D, Cheng J, et al. Nitrogen-doped carbon derived from pre-oxidized pitch for surface dominated potassium-ion storage [J]. Carbon, 2019, 155: 601-610[36] Liang H J, Cu Z Y, Zheng X Y, et al. Tempura-like carbon/carbon composite as advanced anode materials for K-ion batteries [J]. Journal of Energy Chemistry, 2021, 59: 589-598[37] Wang, M, Y Zhu, Zhang Y, et al. Isotropic high softening point petroleum pitch-based carbon as anode for high-performance potassium-ion batteries [J]. Journal of Power Sources, 2021, 481: 228902[38] Choi P R, Kim S G, Jung J C, et al. High-energy-density activated carbon electrode for organic electric-double-layer-capacitor using carbonized petroleum pitch [J]. Carbon Letters, 2017, 22(1): 70-80[39] Lee E, Kwon S H, Choi P R, et al. Activated carbons prepared from mixtures of coal tar pitch and petroleum pitch and their electrochemical performance as electrode materials for electric double-layer capacitor [J]. Carbon Letters, 2015, 16(2): 78-85[40] Liu G W, Chen T Y, Chung C H, et al. Hierarchical micro/mesoporous carbons synthesized with a zno template and petroleum pitch via a solvent-free process for a high-performance supercapacitor [J]. Acs Omega, 2017, 2(5): 2106-2113[41] Liu J Y, Liu Y, Li P, et al. Fe-N-doped porous carbon from petroleum asphalt for highly efficient oxygen reduction reaction [J]. Carbon, 2018, 126: 1-8[42] Zhao Q, Tan X, Ma T, et al. Reinforced atomically dispersed FeNC catalysts derived from petroleum asphalt for oxygen reduction reaction [J]. Journal of Colloid and Interface Science, 2021, 587: 810-819[43] Ning H, Wang X, Wang W, et al. Cubic Cu2O on nitrogen-doped carbon shell for electrocatalytic CO2 reduction to C2H4 [J]. Carbon, 2019, 146: 218-223[44] Ning H, Cuo D, Wang X, et al. Efficient CO2 electroreduction over N-doped hieratically porous carbon derived from petroleum pitch [J]. Journal of Energy Chemistry, 2021, 56: 113-120 |