[1]Yin C., Liu H., Zhao L., et al. Study for the production of ultra-low sulfur gas oils on a highly loaded NiMoW catalyst[J]. Catalysis Today, 2016, 259:409-416. [2]Wang Z., Pei J., Chen S., et al. The surface properties of aluminated meso-macroporous silica and its catalytic performance as hydrodesulfurization catalyst support [J]. Petroleum Science, 2017, 14(2):424-433. [3]Song H., Yu Q., Chen Y., et al. Preparation of highly active MCM-41 supported Ni2P catalysts and its dibenzothiophene HDS performance [J]. Chinese Journal of Chemical Engineering, 2018, 26(3):540-544. [4]He M., Li Y., Zhang J., et al. Desulfurization of gasoline by condensation of thiophenes with formaldehyde in a biphasic system using aqueous phase of acids[J]. Chinese Journal of Chemical Engineering, 2017, 25(2):166-170. [5]Pérez-Martínezc D. J., Gaigneauxb E. M., Giraldo S. A. Improving the selectivity to HDS in the HDT of synthetic FCC naphtha using sodium doped amorphous aluminosilicates as support of CoMo catalysts[J]. Applied Catalysis A: General, 2012, (421-422):48-57. [6]Ishutenko D., Anashkin Y., Nikulshin P. The effect of carrier in KCoMoS-supported catalysts for hydro-upgrading of model FCC gasoline [J]. Applied catalysis B-environmental, 2019, (259):118041. [7]Demirbas A., Balubaid M. A., Basahel A. M., et al. A. Demirbas, M. A. Balubaid, A. M. Basahel, W. Ahmad & M. H. Sheikh (2015) Octane Rating of Gasoline and Octane Booster Additives[J]. Petroleum Science and Technology, 2015, 33(11):1190-1197. [8]Dong L., Luo K., Zhao L., et al. Quantitative relationship between olefin saturation and octane loss during HDS process: An insight from molecular structure to experimental activity[J]. Chemical Engineering Science, 2018, 191:183-190. [9]TA A. Structural Group Contribution Method for Predicting the Octane Number of Pure Hydrocarbon Liquids[J]. Ind. Eng. Chem. Res., 2003, 42:657-662.[10]Meusinger R., Moros R. Determination of octane numbers of gasoline compounds from their chemical structure by 13C NMR spectroscopy and neural networks [J]. Fuel, 2001, 80(5):613-621.[11]Meusinger R., Moros R. Determination of quantitative structure–octane rating relationships of hydrocarbons by genetic algorithms [J]. Chemometrics and Intelligent Laboratory Systems, 1999, 46(1):67-78.[12]彭朴, 陆婉珍. 汽油辛烷值和组成的关系[J]. 石油炼制与化工, 1981, (06):27-38.[13]李长秀, 王亚敏, 田松柏. 成品汽油组成及馏程与计算辛烷值的分布关系[J]. 石油学报(石油加工), 2017, (01):138-143.[14]李长秀, 杨海鹰, 王征. 一种新的汽油辛烷值的气相色谱测定方法[J]. 色谱, 2003, (01):81-84.[15]Nikolaou N., Papadopoulos C. E., Gaglias I. A., et al. A new non-linear calculation method of isomerisation gasoline research octane number based on gas chromatographic data [J]. Fuel, 2004, 83(4-5):517-523.[16]张文林. FCC汽油萃取精馏深度脱硫过程研究[D]. 河北工业大学, 2009.[17]Brunet S., Mey D., Pérot G., et al. On the hydrodesulfurization of FCC gasoline: a review [J]. Applied Catalysis A: General, 2005, 278(2):143-172.[18]Hancsók J., Marsi G., Kasza T., et al. Hydrogenation of the Aromatics and Olefins in FCC Gasoline During Deep Desulphurisation[J]. Topics in Catalysis, 2011, 54(16-18):1102-1109.[19]Magyar S., Hancsók J., Kalló D. Reactivity of several olefins in the HDS of full boiling range FCC gasoline over PtPd/USY [J]. Fuel Processing Technology, 2008, 89(8):736-739.[20]樊莲莲, 高晓冬, 习远兵. FCC汽油选择性加氢脱硫过程中烃类组成与辛烷值损失的关系[J]. 石油炼制与化工, 2010, (09):70-73.[21]PK R. relation between knock and physical properties explored [J]. hydrocarbon processing, 2007, 3(86):89-97.[22]赵悦, 李振兵, 王忠, 等. 催化裂化汽油在加氢脱硫过程中烯烃饱和研究[J]. 当代化工, 2016, (09):2113-2115.[23]A T., Albahri. Structural Group Contribution Method for Predicting the Octane Number of Pure Hydrocarbon Liquids [J]. Ind. Eng. Chem. Res., 2003, 42:657-662. |