石油炼制与化工 ›› 2021, Vol. 52 ›› Issue (3): 87-92.

• 控制与优化 • 上一篇    下一篇

基于开源技术的FCC装置产品收率预测BP神经网络模型

刘洋,苑丹丹,李浩,高雪颖   

  1. 中国石化工程建设有限公司
  • 收稿日期:2020-08-05 修回日期:2020-11-20 出版日期:2021-03-12 发布日期:2021-03-01
  • 通讯作者: 刘洋 E-mail:liuyang02@sei.com.cn

BP NEURAL NETWORK SYSTEM FOR YIELD ANALYSIS OF FCC UNIT BASED ON OPEN SOURCE TECHNOLOGIES

  • Received:2020-08-05 Revised:2020-11-20 Online:2021-03-12 Published:2021-03-01
  • Contact: Yang Liu E-mail:liuyang02@sei.com.cn

摘要: 装置产品收率的估算是前期全厂方案设计的重要环节,利用神经网络技术进行装置收率预测的效率高于传统的人工估算,也是石化项目前期设计信息化的发展方向之一。基于开源语言Python和PHP的石化项目设计前期神经网络系统,建立了一个适用于石化项目设计前期阶段的MIP工艺流化床催化裂化(FCC)装置产品收率预测的组合模型,结果表明,其预测结果与FCC产品收率一致。

关键词: 石化项目设计, 前期阶段, 催化裂化, BP神经网络, 开源语言, Python, PHP

Abstract: The product yield estimation is a crucial part of the whole plant design in the early stage of petrochemical engineering. Previous research has shown the neural network technologies can perform higher efficient yield prediction than traditional manual estimation and is one of the major trends of the petrochemical engineering informatization in the early stage. In this paper, we designed and preliminarily implemented a petrochemical neural network system using Python and PHP as the implementation means, and established a combination model for the yield prediction of fluid catalytic cracking (FCC) unit (MIP process) applicable to the early stage of petrochemical design.The results show that the yields of MIP process predicted by the neural network models are consistent with actual yields in production process.

Key words: design of petrochemical engineering, the early stage, catalytic cracking, BP neural network, open source language, Python, PHP