石油炼制与化工 ›› 2021, Vol. 52 ›› Issue (4): 119-126.
• 综述 • 上一篇
任黎明,秦冰,桑军强,杨宇宁,杨春鹏,王若瑜
收稿日期:
2020-10-12
修回日期:
2020-11-10
出版日期:
2021-04-12
发布日期:
2021-03-30
通讯作者:
王若瑜
E-mail:wangruoyu.ripp@sinopec.com
基金资助:
Received:
2020-10-12
Revised:
2020-11-10
Online:
2021-04-12
Published:
2021-03-30
摘要: 实现污染场地安全高效修复是石化行业发展急需探讨和解决的关键问题。从特征污染物特点、水文地质条件、修复环境效应3个方面分析石化污染场地修复面临的挑战,预测未来石化污染场地地下水修复技术,并提出按照污染程度进行分区修复治理的对策。分析表明,石化污染场地中非水相污染物(NAPL)的疏水性、复合污染物的迁移特征差异、地层的非均质性、地表水-地下水的频繁交互加大了污染精准定位和原位治理修复的难度。研制具有较好迁移性能的高传质、缓释长效修复材料,研发低渗透污染驱替、快速释放的非均质含水层的高效修复技术是未来石化污染场地地下水修复突破的关键。依据污染程度分区修复治理,筛选并集成多技术耦合的原位修复技术,可有效提高石化污染场地修复效果,确保石化场地的安全利用。
任黎明 秦冰 桑军强 杨宇宁 杨春鹏 王若瑜. 石化污染场地地下水修复治理挑战与对策[J]. 石油炼制与化工, 2021, 52(4): 119-126.
[1]李月清.炼化领域系列不平衡待化解[J].[J].中国石油企业, 2018, (03):56-57[2]葛佳.加油站的油品渗漏污染调查及健康风险评估[D].东华大学, 2013.[3]国务院.全国地下水污染防治规划(2011—2020年)[M].北京:国务院. 2011.[4]国务院.水污染防治行动计划[M].北京:国务院. 2015.[5]国务院.土壤污染防治法[M].北京:国务院. 2019.[6]生态环境部, 自然资源部, 住房和城乡建设部, 水利部, 农村农业部.地下水污染防治实施方案[M].北京:生态环境部. 2019.[7]苏贵仁.炼化一体化企业提质增效结构调整优化研究[D].中国石油大学(北京), 2016.[8]环境保护部和国土资源部.全国土壤污染状况调查公报[M].北京:环境保护部和国土资源部. 2014.[9]生态环境部.2018年中国生态环境公报[M].北京:生态环境部. 2018.[10]工业和信息化部.石化和化学工业发展规划(2016-2020年)[M].北京:工业和信息化部. 2016.[11]赵勇胜.地下水污染场地的控制与修复[M].北京:科学出版社, 2015.[12]尤炬炬,郭远明,冉丽红,等.种石化工业特征污染物对日本黄姑鱼的毒性效应[J].山东化工, 2018, 47(18):186-189[13]杨强,李金轩,丁伟翠.浅析地下水污染的主要途径、危害及防治[J].地下水, 2007, (03):72-75+125[14]Wang J, Jiang J, Wang X, et al.Enhanced BTEX formation via catalytic fast pyrolysis of styrene-butadiene rubber: Comparison of different catalysts[J].Fuel, 2020, 278:-[15]Ossai I C, Ahmed A, Hassan A, et al.Remediation of soil and water contaminated with petroleum hydrocarbon: A review[J]. Environmental Technology & Innovation, 2020, 17:-[16]Ajo-Franklin J B, Geller J T, Harris J M.A survey of the geophysical properties of chlorinated DNAPLs[J].Journal of Applied Geophysics, 2006, 59(3):177-189[17]Tomlinson D W, Thornton S F, Thomas A O, et al.An illustrated handbook of DNAPL transport and fate in the subsurface[M]. Illustrated handbook of LNAPL transport and fate in the subsurface. 2003.[18]Engelmann C, H?ndel F, Binder M, et al.The fate of DNAPL contaminants in non-consolidated subsurface systems – Discussion on the relevance of effective source zone geometries for plume propagation[J].Journal of Hazardous Materials, 2019, 375:233-240[19]Logeshwaran P, Megharaj M, Chadalavada S, et al.Petroleum hydrocarbons (PH) in groundwater aquifers: An overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches[J].Environmental Technology & Innovation, 2018, 10:175-193[20]Hashim M A, Mukhopadhyay S, Sahu J N, et al.Remediation technologies for heavy metal contaminated groundwater[J].Journal of Environmental Management, 2011, 92(10):2355-2388[21]Chen L, Liu Y, Liu F, et al.Treatment of co-mingled benzene, toluene and TCE in groundwater[J].Journal of Hazardous Materials, 2014, 275:116-120[22]Aivalioti M, Pothoulaki D, Papoulias P, et al.Removal of BTEX, MTBE and TAME from aqueous solutions by adsorption onto raw and thermally treated lignite[J].Journal of Hazardous Materials, 2012, 207-208:136-146[23]Dong J, Li B, Bao Q.In situ reactive zone with modified Mg(OH)2 for remediation of heavy metal polluted groundwater: Immobilization and interaction of Cr(III), Pb(II) and Cd(II)[J].Journal of Contaminant Hydrology, 2017, 199:50-57[24]Liu S-H, Zeng G-M, Niu Q-Y, et al.Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review[J].Bioresource Technology, 2017, 224:25-33[25]杨悦锁,陈煜,李盼盼,等.土壤、地下水中重金属和多环芳烃复合污染及修复研究进展[J].化工学报, 2017, 68(06):2219-2232[26]Antoniou K, Mamais D, Pantazidou M.Reductive dechlorination of trichloroethene under different sulfate-reducing and electron donor conditions [J].Journal of Contaminant Hydrology, 2019, 226:-[27]Pepino Minetti R C, Macano H R, Britch J, et al.In situ chemical oxidation of BTEX and MTBE by ferrate: pH dependence and stability[J].Journal of hazardous materials, 2016, 324:448-456[28]Pac T J, Baldock J, Brodie B, et al.In situ chemical oxidation: Lessons learned at multiple sites[J].Remediation Journal, 2019, 29(2):75-91[29]You X, Liu S, Dai C, et al.Acceleration and centralization of a back-diffusion process: Effects of EDTA-2Na on cadmium migration in high- and low-permeability systems[J].Science of The Total Environment, 2020, 706:-[30]Zhong L, Szecsody J, Oostrom M, et al.Enhanced remedial amendment delivery to subsurface using shear thinning fluid and aqueous foam[J].Journal of Hazardous Materials, 2011, 191(1-3):249-257[31]Yang M, Annable M D, Jawitz J W.Field-scale forward and back diffusion through low-permeability zones[J].Journal of Contaminant Hydrology, 2017, 202:47-58[32]Maghrebi M, Jankovic I, Allen-King R M, et al.Impacts of transport mechanisms and plume history on tailing of sorbing plumes in heterogeneous porous formations[J].Advances in Water Resources, 2014, 73:123-133[33]Velimirovic M, Auffan M, Carniato L, et al.Effect of field site hydrogeochemical conditions on the corrosion of milled zerovalent iron particles and their dechlorination efficiency[J].Science of The Total Environment, 2018, 618:1619-1627[34]Zhang P, Zhang X, Li Y, et al.Influence of pyrolysis temperature on chemical speciation, leaching ability, and environmental risk of heavy metals in biochar derived from cow manure[J].Bioresource Technology, 2020, 302:-[35]Zhang J, Wang L, Liu Y, et al.Comparative study on the oxidation of N, N-diethyl-3-methyl benzoyl amide by Mn(III) and peroxymonosulfate/Co(II): Selective and nonselective oxidation[J].Chemical Engineering Journal, 2019, 370:962-972[36]Huo L, Liu G, Yang X, et al.Surfactant-enhanced aquifer remediation: Mechanisms, influences, limitations and the countermeasures[J].Chemosphere, 2020, 252:-[37]Arenas-Lago D, Monikh F A, Vijver M G, et al.Dissolution and aggregation kinetics of zero valent copper nanoparticles in (simulated) natural surface waters: Simultaneous effects of pH, NOM and ionic strength[J].Chemosphere, 2019, 226:841-850[38]Bae S, Yoon S, Kaplan U, et al.Effect of groundwater ions (Ca2+, Na+, and HCO3?) on removal of hexavalent chromium by Fe(II)-phosphate mineral[J].Journal of Hazardous Materials, 2020, 398:-[39]Zhang R, Zhang H, Tu C, et al.Dataset for characterization of dissolved organic matter extracted from organic wastes and their effects on the transport of titanium dioxide nanoparticles in acidic saturated porous media in the presence of monovalent electrolyte [J].Data in Brief, 2020, 28:-[40]Mao X, Stenuit B, Tremblay J, et al.Structural dynamics and transcriptomic analysis of Dehalococcoides mccartyi within a TCE-Dechlorinating community in a completely mixed flow reactor[J].Water Research, 2019, 158:146-156[41]Liu H, Bruton T A, Li W, et al.Oxidation of benzene by persulfate in the presence of Fe(III)- and Mn(IV)-containing oxides: Stoichiometric efficiency and transformation products[J].Environmental Science & Technology, 2016, 50(2):890-898[42]Sweijen T, Hartog N, Marsman A, et al.The transport behaviour of elemental mercury DNAPL in saturated porous media: Analysis of field observations and two-phase flow modelling[J].Journal of Contaminant Hydrology, 2014, 161:24-34[43]曲风臣,吴晓峰,林长喜,等.我国化工污染场地修复综述及建议[J].化学工业, 2017, 35(02):44-47[44]Zhilin Guo, Brusseau M L, Fogg G E.Determining the long-term operational performance of pump and treat and the possibility of closure for a large TCE plume[J].Journal of Hazardous Materials, 2019, 365:796-803[45]Shengqi Qi, Jian Luo, et al.A numerical model to optimize LNAPL remediation by multi-phase extraction[J].Science of The Total Environment, 2020, 718:-[46]Meng Y, Bai J, Chang Y, et al.Effects of air flowrate distribution and benzene removal in heterogeneous porous media during air sparging remediation[J].Journal of Hazardous Materials, 2020, 398:-[47]Obiri-Nyarko F, Grajales-Mesa S J, Malina G.An overview of permeable reactive barriers for in situ sustainable groundwater remediation[J].Chemosphere, 2014, 111:243-259[48]Yang Z H, Verpoort F, Dong C D, et al.Remediation of petroleum-hydrocarbon contaminated groundwater using optimized in situ chemical oxidation system: Batch and column studies[J].Process Safety and Environmental Protection, 2020, 138:18-26[49]Herrero J, Puigserver D, Nijenhuis I, et al.Combined use of ISCR and biostimulation techniques in incomplete processes of reductive dehalogenation of chlorinated solvents[J].Science of The Total Environment, 2019, 648:819-829[50]Tripathi S M, Ram S.Bioremediation of Groundwater: An Overview[J].International Journal of Applied Engineering Research, 2018, 13(24):16825-16832[51]Scow K M, Hicks K A.Natural attenuation and enhanced bioremediation of organic contaminants in groundwater[J].Current Opinion in Biotechnology, 2005, 16(3):246-253[52]Judith Wright.Chapter 8 - Treatability Study of Reactive Materials to Remediate Groundwater Contaminated with Radionuclides, Metals, and Nitrates in a Four-Component Permeable Reactive Barrier[M]. Handbook of Groundwater Remediation using Permeable Reactive Barriers. Elsevier Inc. 2003.[53]David O, Deyi H, Sik O Y, et al.Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: A review[J].Journal of Controlled Release, 2018, 283:200-213[54]Corredor L M, Husein M M, Maini B B.A review of polymer nanohybrids for oil recovery[J].Advances in Colloid and Interface Science, 2019, 272:-[55]贾振岐.油气水三相在多孔介质中的流动[J].大庆石油地质与开发, 1987, (03):67-74[56]周硕.超低渗透油藏泡沫辅助氮气驱试验研究[J].中国石油和化工标准与质量, 2020, 40(03):60-61[57]王晓燕, 郑建中, 翟建平.SEAR技术修复土壤和地下水中NAPL污染的研究进展[J].环境污染治理技术与设备, 2006, (10):1-5[58]王锦淮, 顾春杰.多相抽提+原位化学氧化联合技术在有机污染场地的工程应用[J].上海化工, 2017, 42(12):20-24[59]张晶, 张峰, 马烈.多相抽提和原位化学氧化联合修复技术应用——某有机复合污染场地地下水修复工程案例[J].环境保护科学, 2016, 42(03):154-158[60]Besha A T, Bekele D N, Naidu R, et al.Recent advances in surfactant-enhanced In-Situ Chemical Oxidation for the remediation of non-aqueous phase liquid contaminated soils and aquifers[J].Environmental Technology & Innovation, 2018, 9:303-322[61]马浩.CMC增溶与SPS化学氧化联合修复石油烃污染土壤研究[D].重庆大学, 2016.[62]Kulik N, Goi A, Trapido M, et al.Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil[J].Journal of Environmental Management, 2006, 78(4):382-391[63]Xie G, Barcelona M J.Sequential chemical oxidation and aerobic biodegradation of equivalent carbon number-based hydrocarbon fractions in jet fuel[J].Environmental ence & Technology, 2003, 37(20):4751-4760[64]宋易南, 侯德义, 赵勇胜, 朱瑾, 张琪, 秦传玉, 王文峰.京津冀化工场地地下水污染修复治理对策研究[J].环境科学研究, 2020, 33(06):1345-1356[65]生态环境部,建设用地土壤污染风险评估技术导则: HJ 25.3-2019[S], 2019. |
[1] | 任黎明 高雨函 杨宇宁 杨春鹏 孟凡宾 赵锐. 某炼化污水处理场污染物迁移分布规律[J]. 石油炼制与化工, 2023, 54(5): 88-96. |
[2] | 安谧 徐华 张若霖 张兆前 郑方 王剑. 基于FIB-SEM和TEM的催化裂化催化剂元素分布研究[J]. 石油炼制与化工, 2023, 54(3): 48-53. |
[3] | 李凌波. 简析中美石化行业泄漏检测与修复(LDAR)标准[J]. 石油炼制与化工, 2023, 54(10): 22-29. |
[4] | 刘倩倩 达志坚 吕令玮 宋海涛 于波 吴文俊 叶行 熊一冉. 催化裂化催化剂铁中毒问题剖析[J]. 石油炼制与化工, 2022, 53(5): 1-6. |
[5] | 白锐. 催化裂化反应器床层铁迁移规律研究及新型抗铁催化剂的工业应用[J]. 石油炼制与化工, 2022, 53(4): 38-42. |
[6] | 梁倩倩 乔海燕 石薇薇 贾晓宇 曹祖宾 韩冬云. 炼化含油污泥中有机污染物的提取与分析[J]. 石油炼制与化工, 2022, 53(1): 99-104. |
[7] | 张峰 于丽 秦冰 孔细模 蒋丽华 曹凤仪 蔡新恒. 延迟焦化装置放空塔塔顶冷凝水中有机污染物的分布特征[J]. 石油炼制与化工, 2021, 52(9): 69-74. |
[8] | 王栋. 石油化工企业原址土壤修复过程中废气治理案例研究[J]. 石油炼制与化工, 2021, 52(6): 112-116. |
[9] | 苏鹏 牛明明 熊云 谷科城 许天瑜 韩森. 特征真菌对喷气燃料性质的影响[J]. 石油炼制与化工, 2021, 52(3): 77-82. |
[10] | 李雪礼 袁程远 王启飞 张琰图. 抗铁污染催化裂化催化剂的制备及性能评价[J]. 石油炼制与化工, 2020, 51(6): 42-46. |
[11] | 周建华. 催化裂化烟气湿法净化装置运行问题及治理措施探讨[J]. 石油炼制与化工, 2020, 51(1): 86-91. |
[12] | 胡贝 袁程远 张海涛 郭大江 高雄厚 杜正银. 中孔氧化铝在抗铁污染FCC催化剂中的应用研究[J]. 石油炼制与化工, 2019, 50(7): 80-84. |
[13] | 章群丹 田松柏. 罐车柴油污染物分离及鉴定[J]. , 2019, 50(4): 75-77. |
[14] | 李宁 任飞 刘守军 朱玉霞. CMT-1HN催化剂在高含量铁污染条件下的工业应用[J]. 石油炼制与化工, 2019, 50(2): 63-67. |
[15] | 张永明 李磊 李怿 白正伟. 多环芳烃污染土壤的化学氧化处理研究[J]. 石油炼制与化工, 2019, 50(11): 106-110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||