石油炼制与化工 ›› 2022, Vol. 53 ›› Issue (8): 91-96.

• 控制与优化 • 上一篇    下一篇

基于工业数据的催化裂化装置选择性催化还原脱硝机理模型

戴宁锴1,王杰1,欧阳福生1,王建平2,焦云强2,裴旭2   

  1. 1. 华东理工大学化工学院石油加工研究所
    2. 石化盈科信息技术有限责任公司
  • 收稿日期:2022-03-04 修回日期:2022-04-08 出版日期:2022-08-12 发布日期:2022-07-30
  • 通讯作者: 欧阳福生 E-mail:ouyfsh@ecust.edu.cn

MODELING THE DENITRIFICATION MECHANISM OF SELECTIVE CATALYTIC REDUCTION IN CATALYTIC CRACKING UNIT BASED ON INDUSTRIAL DATA

  • Received:2022-03-04 Revised:2022-04-08 Online:2022-08-12 Published:2022-07-30
  • Contact: Fu-Sheng OUYANG E-mail:ouyfsh@ecust.edu.cn

摘要: 通过研究选择性催化还原(SCR)技术机理,建立催化裂化(FCC)装置再生烟气SCR系统脱硝机理微分方程组模型。基于大量工业SCR系统数据,利用龙格库塔吉尔(RKG)方法对脱硝机理微分方程组进行求解,并结合遗传算法对模型参数进行寻优。结果表明,模型对FCC装置SCR系统出口氮氧化物(NOx)浓度预测的平均绝对误差为5.75%,模型预测值与装置实际值拟合的可决系数为0.906。这说明所建SCR脱硝机理模型具有较强的泛化能力和较高模拟精度,可用于优化FCC装置再生烟气SCR系统的操作条件,实现NOx排放达标。

关键词: 选择性催化还原, 烟气脱硝, 氮氧化物, 机理模型, 龙格库塔吉尔法, 遗传优化算法

Abstract: Based on the mechanism of selective catalytic reduction (SCR) technology, a set of denitrification mechanism modeling equations of regenerator flue gas SCR system in fluidcatalytic cracking unitwere established. According to a large amount data of SCR system, the mechanism model equations were solved by Runge-Kutta-Gill method, and the model parameters were optimized by combining genetic algorithm. The verification results show that the mean absolute percentage error of the model is 5.75% and the coefficient of determination is 0.906, which indicate that the established SCR denitrification mechanism model has strong generalization ability and high simulation accuracy. The model will be expected to play an important role in optimizing the operating conditions of the SCR systems for achievement standard ofnitrogen oxides emission of the treated flue gas.

Key words: selective catalytic reduction, flue gas denitrification, nitrogen oxides, mechanism model, Runge-Kutta-Gill method, genetic algorithm method