石油炼制与化工 ›› 2023, Vol. 54 ›› Issue (1): 17-29.
蔡凯,唐立文,于善青,刘雨晴,林伟
收稿日期:
2022-06-02
修回日期:
2022-09-21
出版日期:
2023-01-12
发布日期:
2023-01-16
通讯作者:
于善青
E-mail:yusq.ripp@sinopec.com
#br#
Received:
2022-06-02
Revised:
2022-09-21
Online:
2023-01-12
Published:
2023-01-16
摘要: 磷酸硅铝分子筛(SAPO)是一类重要的无机多孔材料,近年来被广泛应用于催化、吸附、分离和环保等诸多领域。SAPO分子筛狭窄的微孔孔道会带来较大的传质阻力,不利于反应物分子与孔道内部活性位点接触。减小SAPO分子筛的晶粒尺寸可以缩短反应物分子在孔道内的停留时间,从而提高活性中心的利用率。综述了国内外近年来小晶粒SAPO分子筛合成方法的研究进展,包括混合模板剂法、晶种诱导法等,并对每种合成方法的优点和缺点进行了介绍和对比。混合模板剂法合成小晶粒SAPO分子筛流程简单、工艺成熟,未来的研究方向应聚焦如何降低有机模板剂的使用量。其余的合成方法大多处于理论研究阶段,未来的研究方向不仅要关注合成工艺的优化,也应注重分子筛合成设备的开发。
蔡凯 唐立文 于善青 刘雨晴 林伟. 小晶粒磷酸硅铝分子筛合成方法的研究进展[J]. 石油炼制与化工, 2023, 54(1): 17-29.
[1] Jin Shaoqing, Sun Hongmin, Yang Weimin. Applications of zeolite catalysts in chemical industry[J]. Chemical Journal of Chinese Universities-Chinese, 2021, 42(1): 217-226. [2] 蒋文斌,龙军,田辉平,等. 一种含稀土超稳 Y型沸石的石油烃裂化催化剂[P]. 中国专利:CN 1317359 C,2007-05-23.[3] Garcia-Martinez J., Li K., Krishnaiah G. A mesostructured Y zeolite as a superior FCC catalyst-lab to refinery[J]. Chemical Communications, 2012, 48(97): 11841-11843.[4] St?cker Michael. Methanol-to-hydrocarbons: Catalytic materials and their behavior[J]. Microporous & Mesoporous Materials, 1999, 29(1-2): 3-48.[5] Wilson S. T., Lok B. M., Messina C. A., et al. Aluminophosphate molecular sieves: A new class of microporous crystalline inorganic solids[J]. Journal of the American Chemical Society, 1982, 104(4): 1146-1147.[6] Lok B. M., Messina C. A., Patton R. L., et al. Silicoaluminophosphate molecular sieves: Another new class of microporous crystalline inorganic solids[J]. Journal of the American Chemical Society, 1984, 106(20) :6092-6093.[7] Prakash A. M., Unnikrishnan S. Synthesis of SAPO-34: High silicon incorporation in the presence of morpholine as template[J]. Journal of the Chemical Society Faraday Transactions, 1994, 90(15): 2291-2296.[8] Vomscheid R., Briend M., Peltre M. J., et al. The role of the template in directing the Si distribution in SAPO zeolites[J]. Journal of Physical Chemistry, 1994, 98(38): 9614-9618.[9] Barthomeuf D. Topological model for the compared acidity of SAPOs and SiAl zeolites[J]. Zeolites, 1994, 14(6): 394-401.[10] 谭涓,刘中民,何长青,等. SAPO-34分子筛晶化机理的研究[J]. 催化学报, 1998, 19(5): 436-441.[11] 邢爱华,冯琦瑶,张新锋,等. SAPO-34分子筛晶化机理及晶化动力学研究[J]. 工业催化, 2016, 24(2):5-13.[12] Liu Guangyu, Tian Peng, Li Jinzhe, et al. Synthesis, characterization and catalytic properties of SAPO-34 synthesized using diethylamine as a template[J]. Microporous and Mesoporous Materials, 2008, 111(1-3): 143-149.[13] Anjos Wld, Morales Sav, Oliveira Nmb, et al. Effect of silica/alumina ratio and structure-directing agent on the physical and chemical properties of SAPO-34[J]. Journal of Sol-Gel Science and Technology, 2021, 100(3): 466-476.[14] Yuan Delin, Xing Aihua, Miao Ping, et al. Assembly of sub-crystals in macro-scale and construction of composite building units in micro-scale for SAPO-34[J]. Chemistry-An Asian Journal, 2018, 13(20): 3063-3072.[15] 韩敏. SAPO-34分子筛的合成,改性及在MTO中的应用[D]. 大连:大连理工大学,2009.[16] 何长青,刘中民,杨立新,等. 模板剂对 SAPO-34分子筛晶粒尺寸和性能的影响[J]. 催化学报, 1995, 16(1): 33-37.[17] 刘红星,谢在库,张成芳,等. 不同模板剂合成SAPO-34分子筛的表征与热分解过程研究[J]. 化学物理学报, 2003, 16(6): 521-527.[18] Lee Yun-Jo, Baek Seung-Chan, Jun Ki-Won. Methanol conversion on SAPO-34 catalysts prepared by mixed template method[J]. Applied Catalysis A: General, 2007, 329: 130-136.[19] Ye Liping, Cao Fahai, Ying Weiyong, et al. Effect of different teaoh/dea combinations on SAPO-34’s synthesis and catalytic performance[J]. Journal of Porous Materials, 2010, 18(2): 225-232.[20] Wang Pengfei, Lv Ailing, Hu Jie, et al. The synthesis of SAPO-34 with mixed template and its catalytic performance for methanol to olefins reaction[J]. Microporous and Mesoporous Materials, 2012, 152: 178-184.[21] Chae H. J., Park I. J., Song Y. H., et al. Physicochemical characteristics of SAPO-34 molecular sieves synthesized with mixed templates as MTO catalysts[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(1): 195-202.[22] Ye Liping, Cao Fahai, Ying Weiyong, et al. Methanol conversion on SAPO-34 catalysts synthesized by tri-templates[J]. MRS Online Proceedings Library, 2010, 22: 1279.[23] Xie Bin, Zhang Haiyan, Yang Chengguang, et al. Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates[J]. Chemical Communications, 2011, 47, 3945–3947.[24] Ren Nan, Yang Zhijian, Lv Xinchun, et al. A seed surface crystallization approach for rapid synthesis of submicron zsm-5 zeolite with controllable crystal size and morphology[J]. Microporous and Mesoporous Materials, 2010, 131(1-3): 103-114.[25] Sun Qiming, Wang Ning, Guo Guanqi, et al. Ultrafast synthesis of nano-sized zeolite SAPO-34 with excellent MTO catalytic performance[J]. Chemical Communications, 2015, 51: 16397-16400.[26] Sun Qiming, Wang Ning, Bai Risheng, et al. Seeding induced nano-sized hierarchical SAPO-34 zeolites: Cost-effective synthesis and superior MTO performance[J]. Journal of Materials Chemistry A, 2016, 4(39): 14978-14982.[27] Chen Guangrui, Sun Qiming, Yu Jihong. Nanoseed-assisted synthesis of nano-sized SAPO-34 zeolites using morpholine as the sole template with superior MTO performance[J]. Chemical Communications, 2017, 53: 13328-13331.[28] Gao Beibei, Yang Miao, Qiao Yuyan, et al. A low-temperature approach to synthesize low-silica SAPO-34 nanocrystals and their application in the methanol-to-olefins (MTO) reaction[J]. Catalysis Science & Technology, 2016, 6(20): 7569-7578.[29] Lu Huihui, Duan Weiting, Zhao Xinhong. Seed-assisted grinding synthesis of SAPO-34 catalyst and its prolonged catalytic lifetime in the conversion of methanol to olefins[J]. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128(2): 1029-1042.[30] Sun Chao, Wang Yaquan, Zhao Aijuan, et al. Synthesis of nano-sized SAPO-34 with morpholine-treated micrometer-seeds and their catalytic performance in methanol-to-olefin reactions[J]. Applied Catalysis A: General, 2019, 589: 117314.[31] Chen Zhou, Song Wenjing, Zhu Shaohong, et al. Synthesis of a multi-branched dandelion-like SAPO-11 by an in situ inoculating seed-induced-steam-assisted conversion method (SISAC) as a highly effective hydroisomerization support[J]. RSC Advances, 2017, 7(8): 4656-4666.[32] Chen Zhou, Li Xinyuan, Xu Yingrui, et al. Fabrication of nano-sized SAPO-11 crystals with enhanced dehydration of methanol to dimethyl ether[J]. Catalysis Communications, 2018, 103: 1-4.[33] Yang Lingmei, Li Huiwen, Fu Jun ying, et al. Synthesis of a novel nano-rod-shaped hierarchical silicoaluminophosphate SAPO-11 molecular sieve with enhanced hydroisomerization of oleic acid to iso-alkanes[J]. RSC Advances, 2019, 9(59): 34457-34464.[34] 代校军,成艳,王晓晗,等. 小粒径SAPO-11分子筛合成的研究进展[J]. 化工进展, 2021, 40(S1): 191-203.[35] Hirota Yuichiro, Murata Kenji, Tanaka Shunsuke, et al. Dry gel conversion synthesis of SAPO-34 nanocrystals[J]. Materials Chemistry and Physics, 2010, 123(2-3): 507-509.[36] Askari Sima, Sedighi Zahra, Halladj Rouein. Rapid synthesis of SAPO-34 nanocatalyst by dry gel conversion method templated with morphline: Investigating the effects of experimental parameters[J]. Microporous and Mesoporous Materials, 2014, 197: 229-236.[37] Nazari Mohadese, Moradi Gholamreza, Behbahani Reza M., et al. Dry gel conversion as a suitable method for increasing the lifetime of SAPO-18 in MTO process[J]. Journal of Natural Gas Science and Engineering, 2016, 29: 337-344.[38] Han Lei, Liu Yuxiang, Subhan Fazle, et al. Particle effect of SAPO-11 promoter on isomerization reaction in FCC units[J]. Microporous and Mesoporous Materials, 2014, 194: 90-96.[39] Ren Limin, Wu Qinming, Yang Chengguang, et al. Solvent-free synthesis of zeolites from solid raw materials[J]. Journal of the American Chemical Society, 2012, 134(37): 15173-15176.[40] Jin Yinying, Sun Qi, Qi Guodong, et al. Solvent-free synthesis of silicoaluminophosphate zeolites[J]. Angewandte Chemie, International Edition in English, 2013, 52(35): 9172-9175.[41] Li Meng, Wang Yihui, Bai Lu, et al. Solvent-free synthesis of SAPO-34 nanocrystals with reduced template consumption for methanol-to-olefins process[J]. Applied Catalysis A: General, 2017, 531: 203-211.[42] 赵新红,郝志鑫,张晓晓,等. 改进的无溶剂法制备FeAPO-11分子筛及其催化性能[J]. 石油学报(石油加工),2019, 35(1): 166-175.[43] Gharibeh M, Tompsett G. A., Conner W. C., et al. Microwave synthesis of SAPO-11 and AlPO-11: Aspects of reactor engineering[J]. Chemphyschem, 2008, 9(17): 2580-2591.[44] Bértolo R, Silva J. M., Ribeiro M. F., et al. Microwave synthesis of SAPO-11 materials for long chain n -alkanes hydroisomerization: Effect of physical parameters and chemical gel composition[J]. Applied Catalysis A: General, 2017, 542: 28-37.[45] Hendrik van Heyden Svetlana Mintova, and Thomas Bein. Nanosized SAPO-34 synthesized from colloidal solutions[J]. Chemistry of Materials, 2008, 20: 2956-2963.[46] Lin Song, Li Jiyang, Sharma Raj Pal, et al. Fabrication of SAPO-34 crystals with different morphologies by microwave heating[J]. Topics in Catalysis, 2010, 53(19-20): 1304-1310.[47] Shalmani Fariba Marzpour, Halladj Rouein, Askari Sima. Effect of contributing factors on microwave-assisted hydrothermal synthesis of nanosized SAPO-34 molecular sieves[J]. Powder Technology, 2012, 221: 395-402.[48] Askari S, Halladj R. Ultrasonic pretreatment for hydrothermal synthesis of SAPO-34 nanocrystals[J]. Ultrasonics Sonochemistry, 2012, 19(3): 554-559.[49] Askari Sima, Halladj Rouein. Effects of ultrasound-related variables on sonochemically synthesized SAPO-34 nanoparticles[J]. Journal of Solid State Chemistry, 2013, 201: 85-92.[50] Moradiyan E., Halladj R., Askari S. The beneficial use of ultrasound in rapid-synthesis of SAPO-34/ZSM-5 nanocomposite and its catalytic performances on MTO reaction[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 1871-1882.[51] 杨德兴,王鹏飞,徐华胜,等. 两步晶化法合成纳米SAPO-34分子筛及其催化性能[J]. 高等学校化学学报, 2011, 32(4): 939-945.[52] 崔楼伟,何观伟,顾建峰,等. 小晶粒 SAPO-11 分子筛合成及其正己烷异构化催化性[J]. 工业催化, 2018, 26(9): 36-40.[53] Zhang Shengzhen, Chen Shengli, Dong Peng, et al. Synthesis, characterization and hydroisomerization catalytic performance of nanosize SAPO-11 molecular sieves[J]. Catalysis Letters, 2007, 118: 109-117.[54] Wakihara Toru, Sato Koki, Inagaki Satoshi, et al. Fabrication of fine zeolite with improved catalytic properties by bead milling and alkali treatment[J]. ACS Applied Materials & Interfaces, 2010, 2(10): 2715-2718.[55] Yang Miao, Tian Peng, Wang Chan, et al. A top-down approach to prepare silicoaluminophosphate molecular sieve nanocrystals with improved catalytic activity[J]. Chemical Communications, 2014, 50(15): 1845-1897.[56] Zhang Yunfeng, Ding Hongxin, Li Liyuan, et al. Generating nanocrystalline SAPO-34 through bead-milling and porogen-assisted recrystallization: Structural evolution and catalytic consequence in dimethyl ether-to-olefin conversion[J]. Applied Catalysis A: General, 2022, 632:118483. |
[1] | 樊金龙 朱学栋 徐亚荣 杨帆. Pd/FER分子筛模板剂脱除及其催化正丁烯骨架异构化反应性能[J]. 石油炼制与化工, 2024, 55(3): 9-20. |
[2] | 孙佳丽 郑君宁 花俊峰 邱小魁 许立信 叶明富 万超. 双模板剂合成Co2P纳米片及其催化氨硼烷水解性能的研究[J]. 石油炼制与化工, 2024, 55(2): 186-192. |
[3] | 郭智慧 朱伟平 郭磊. 晶种对合成小晶粒SAPO-34分子筛的影响[J]. 石油炼制与化工, 2022, 53(9): 56-64. |
[4] | 魏书梅. 不同硅铝比小晶粒ZSM-5分子筛的合成及催化苯/甲醇烷基化反应性能[J]. 石油炼制与化工, 2022, 53(10): 42-49. |
[5] | 王鹏 韩蕾 郭瑶庆 王维家 达志坚. 小晶粒Y分子筛气相超稳化方法研究[J]. 石油炼制与化工, 2020, 51(7): 49-54. |
[6] | 陈艳红 韩东敏 崔红霞 张强 李春义. 无机体系中两段晶化法合成ZSM-5分子筛的研究[J]. 石油炼制与化工, 2019, 50(10): 13-17. |
[7] | 卜佳玉 王东军 颜子金 侯凯湖. 模板剂和助剂对Pt/MOR催化剂临氢异构催化性能的影响[J]. , 2018, 49(9): 69-74. |
[8] | 李鹏 李峰 刘宇健 郑家军 李文林 崔杏雨 李瑞丰. 含磷模板和不同硅源对多级孔ZSM-5分子筛结构和催化性能的影响[J]. , 2018, 49(8): 21-27. |
[9] | 高俊魁 钟进. 具有特殊晶体结构的SAPO-11分子筛的合成及其表征[J]. 石油炼制与化工, 2017, 48(5): 37-42. |
[10] | 周丽娜 刘中清 戴泳 罗一斌 舒兴田. 利用双极膜电渗析实现ZSM-5分子筛清洁化生产的研究[J]. 石油炼制与化工, 2017, 48(2): 1-5. |
[11] | 施岩 赵猛 王海彦 王莹光. TiO2-Al2O3复合载体的制备条件考察[J]. 石油炼制与化工, 2010, 41(2): 16-21. |
[12] | 郭海福,陈志胜,闫鹏. 稀土固体超强酸SO42-/SnO2-Nd2O3催化剂的软模板剂法制备及表征[J]. 石油炼制与化工, 2010, 41(10): 58-63. |
[13] | 王洋 钟辉 姜丽丽. 不同模板剂对TiO2-Al2O3复合载体性能的影响[J]. 石油炼制与化工, 2008, 39(4): 11-15. |
[14] | 李黎声 李军 张凤美. 模板剂对SAPO-34的合成、性质及催化性能的影响[J]. 石油炼制与化工, 2008, 39(4): 1-6. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||