[1]Aicher T.Renewable Hydrogen TechnologiesProduction,Purification,Storage,Applications,and Safety. Edited by Luis M. Gandía,Gurutze Arzamendi,and Pedro M. Diéguez[J].Energy Technology, 2015, 3(1):90-91[2]屠伟龙.采用膜分离技术回收炼油厂瓦斯气中氢气存在的问题及解决方法[J].石油炼制与化工, 2008, 39(08):17-20[3]田金光.炼化企业氢气资源优化综合利用[J].石油炼制与化工, 2021, 52(06):108-111[4]许楠, 肖风良.制氢装置变压吸附现状分析及改造措施[J].石油炼制与化工, 2018, 49(10):20-24[5]周天宇.膜与深冷联合/耦合回收乙烯裂解气中的氢气[D]. 大连理工大学, 2016[6]魏昕, 丁黎明, 郦和生.膜法氢气分离技术及其在化工领域的应用进展[J].石油化工, 2021, 50(05):472-478[7]Lu H.T.,Li W,Miandoab E. S.,et al. The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: a review[J].FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2021, 15(3):464-482[8]王园园, 杨晓航, 郭明钢.膜分离技术在炼油厂氢气回收中的应用研究[J].炼油技术与工程, 2021, 51(10):25-29[9]Carta M.Malpass-Evans R,Croad M.,et al. An Efficient Polymer Molecular Sieve for Membrane Gas Separations[J].SCIENCE, 2013, 339(6117):303-307[10]Lee W.H.,Seong JG.,Hu X.,et al. Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: Pushing performance limits and revisiting trade-off lines[J].JOURNAL OF POLYMER SCIENCE, 2020, 58(18):2450-2466[11]Liaw D.Wang K,Huang Y.,et al. Advanced polyimide materials: Syntheses,physical properties and applications[J].Progress in Polymer Science, 2012, 37(7):907-974[12]刘源, 马骏, 赵华.聚酰亚胺在光催化领域的应用进展[J].石油化工, 2021, 50(04):374-380[13]KIM T.H.,KOROS WJ.,HUSK G. R.,et al. RELATIONSHIP BETWEEN GAS SEPARATION PROPERTIES AND CHEMICAL-STRUCTURE IN A SERIES OF AROMATIC POLYIMIDES[J].JOURNAL OF MEMBRANE SCIENCE, 1988, 37(1):45-62[14]Zhuang Y.Seong JG.,Do Y. S.,et al. Intrinsically Microporous Soluble Polyimides Incorporating Tr?ger’s Base for Membrane Gas Separation[J].Macromolecules, 2014, 47(10):3254-3262[15]Shrimant B.Dangat Y,Kharul U. K.,et al. Intrinsically microporous polyimides containing spirobisindane and phenazine units: Synthesis,characterization and gas permeation properties[J].Journal of Polymer Science Part A: Polymer Chemistry, 2018, 56(7):766-775[16]Zhuang Y, Seong J. G., Lee Y. M. .Polyimides containing aliphatic/alicyclic segments in the main chains[J]. Progress in Polymer Science, 2019, 92:35-88[17]Zhang Y, Lee W. H., Seong J. G., et al. .Alicyclic segments upgrade hydrogen separation performance of intrinsically microporous polyimide membranes[J].Journal of Membrane Science, 2020, 611:118363-113874[18]Wiegand J.R.,Smith ZP.,Liu Q.,et al. Synthesis and characterization of triptycene-based polyimides with tunable high fractional free volume for gas separation membranes[J].Journal of Materials Chemistry A, 2014, 2(33):13309-13320[19]Xiao Y.Shao Y,Ye X.,et al. Microporous aromatic polyimides derived from triptycene-based dianhydride[J].Chinese Chemical Letters, 2016, 27(3):454-458[20]Zhang Q.Li S,Li W.,et al. Synthesis and properties of novel organosoluble polyimides derived from 1,4-bis[4-(3,4-dicarboxylphenoxy)]triptycene dianhydride and various aromatic diamines[J].Polymer, 2007, 48(21):6246-6253[21]Alghunaimi F, Ghanem B., Alaslai N., et al. .Triptycene dimethyl-bridgehead dianhydride-based intrinsically microporous hydroxyl-functionalized polyimide for natural gas upgrading[J].Journal of Membrane Science, 2016, 520:240-246[22]Zhuang Y.Seong JG.,Do Y. S.,et al. Soluble,microporous,Tr?ger's Base copolyimides with tunable membrane performance for gas separation[J].Chemical Communications, 2016, 52(19):3817-3820[23]Robeson L.M. The upper bound revisited[J].Journal of Membrane Science, 2008, 320(1):390-400 |