石油炼制与化工 ›› 2023, Vol. 54 ›› Issue (3): 120-126.

• 优化与控制 • 上一篇    

大数据驱动建模平台技术在加氢裂化工艺预测上的应用

王晨,陆鹏飞,阮冰,杨纪,方友,曹晓红   

  1. 中海油惠州石化有限公司信息中心
  • 收稿日期:2022-08-15 修回日期:2022-11-17 出版日期:2023-03-12 发布日期:2023-03-23
  • 通讯作者: 曹晓红 E-mail:caoxh2@cnooc.com.cn
  • 基金资助:
    中海油惠州石化科研基金项目

APPLICATION OF BIG DATA-DRIVEN MODELING PLATFORM TECHNOLOGY IN HYDROCRACKING PROCESS PREDICTION

  • Received:2022-08-15 Revised:2022-11-17 Online:2023-03-12 Published:2023-03-23

摘要: 随着炼化装置传感器与集散控制系统的普及,基于数据驱动建模技术对生产大数据的分析、模拟,进而指导生产优化、监测预警,日益成为研究应用热点。总结了数据驱动建模方法,包括多元统计过程控制(MSPC)、机器学习(ML)、深度学习(DL) 等在炼化流程建模优化过程中的应用;介绍了中海油惠州石化有限公司构建的炼化大数据驱动建模平台,以及基于堆叠自编码器(SAEs)-混合高斯模型(GMM)对多模态工况下加氢裂化生产喷气燃料收率的预测。结果表明:炼化大数据驱动模型对加氢裂化过程预测的准确性优异;与传统数据驱动建模相比,该炼化大数据驱动建模平台实现了无代码建模工作流,建模耗时由传统的7 d大幅缩短为2 h左右,显著提升了建模效率。

关键词: 数据驱动建模, 炼化大数据, 建模平台, 加氢裂化, 多模态工况

Abstract: With the popularization of sensors and distributed control systems in refining and chemical plants, the analysis and simulation of production using big data based on data-driven modeling technology can guide production optimization, process monitoring and early warning, which has become a hot spot of research and application. Data-driven modeling methods, including the application of multivariate statistical process control (MSPC), machine learning (ML) and deep learning (DL) in the process of refining and chemical process modeling, were summarized. The big data-driven modeling platform built by CNOOC Huizhou Petrochemical Company for refining and petrochemical industry was introduced, and based on the big data-driven modeling platform, the stacked auto-encoders-Gaussian mixture model (SAEs-GMM) algorithm was proposed to predict the jet fuel yield of hydrocracking unit under multi-modes. The results showed that the prediction accuracy of the refinery and petrochemical big data-driven model was excellent, and compared with the traditional data-driven modeling methods, the refinery and petrochemical big data-driven modeling platform realized the code-less modeling workflow, the time of modeling was shortened from the traditional 7 days to about 2 hours, and the efficiency of modeling was greatly improved.

Key words: data-driven modeling, petrochemical big data, modeling platform, hydrocracking, multi-modes