[1]张梦轩,刘洪辰,王敏,等. 化工过程的智能混合建模方法及应用[J]. 化工进展, 2021, 40(4): 1765-1775.[2]王晨, 杨杰, 李保良. Petro-SIM模拟软件在中压加氢裂化流程模拟中的应用[J]. 炼油技术与工程, 2018, 48(5): 42-46[3]孟凡辉,纪传佳,杨纪. 惠州石化有限公司连续重整装置工艺流程模拟与优化[J]. 化工进展, 2017,36(7): 2724.[4]王晨. BP神经网络在中压加氢裂化装置多方面预测中的应用研究[J]. 石油炼制与化工, 2018, 49(7): 95-97.[5] 闫乃锋,王晨. BP神经网络在加氢裂化装置航煤性质软测量中的应用[J]. 工业催化,2020, 28(8): 65-68.[6] 杨帆,周敏,金继民,等. 智能优化算法及人工神经网络在催化裂化模型分析中的应用进展[J]. 石油学报(石油加工),2020,36(7):879-888.[7] 赵春晖,王福利. 工业过程运行状态智能监控:数据驱动方法[M]. 北京:化学工业出版社, 2019: 7-8.[8] GE Zhiqiang. Review on data-driven modeling and monitoring for plant-wide industrial processes[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 171: 16-25.[9] SHANG Chao, YANG Fan, HUANG Dexian, et al. Data-driven soft sensor development based on deep learning technique[J]. Journal of Process Control, 2014, 24(3): 223-233.[10] Diogo A.C. Narciso, F.G. Martins. Application of machine learning tools for energy efficiency in industry: A review[J]. Energy Reports, 2020, 6: 1181-1199.[11] Marcos Qui?ones-Grueiro, Alberto Prieto-Moreno, Cristina Verde, et al. Data-driven monitoring of multimode continuous processes: A review. Chemometrics and Intelligent Laboratory Systems, 2019, 189(15): 56-71.[12] GE Zhiqiang, SONG Zhihuan, GAO Furong. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3543–3562.[13] GE Zhiqiang, SONG Zhihuan, DING STEVEN X., et al. Data Mining and Analytics in the Process Industry: The Role of Machine Learning[J]. IEEE Access, 2017, 5: 20590-20616. [14] SUN Qingqiang, GE Zhiqiang. A Survey on Deep Learning for Data-Driven Soft Sensors[J], IEEE Transaction on Industrial Informatics, 2021, 19(9): 5853-5866.[15] Sylvain Verrona, Jing Li, Teodor Tiplica. Fault detection and isolation of faults in a multivariate process with Bayesian network[J]. Journal of Process Control, 2010, 20: 902-911.[16] ZHANG Xi, YAN Weiwu, ZHAO Xu, etc. Nonlinear Real-Time Process Monitoring and Fault Diagnosis Based on Principal Component Analysis and Kernel Fisher Discriminant Analysis[J]. Chem. Eng. Technol. 2007, 30, No. 9, 1203–1211.[17] Bart De Ketelaere, Mia Hubert, Eric Schmitt. Overview of PCA-Based Statistical Process Monitoring Methods for Time-Dependent, High-Dimensional Data[J]. Journal of Quality Technology, 47:4, 318-335.[18] LIU Xueqin, LI Kang, Marion McAfeeb, etc. Improved nonlinear PCA for process monitoring using support vector data description[J]. Journal of Process Control, 2011, 21: 1306-1317.[19] Wold S, Esbensen K, Geladi P. Principle component analysis[J]. Chemometrics and Intelligent Laboratory System, 1987, 2(1-3): 37-52.[20] Jong S D. SIMPLS: an alternative approach to partial least squares regression[J]. Chemometrics and Intelligent Laboratory System, 1993, 18(3): 251-263.[21] Comon P. Independent component analysis, a new concept[J]. Signal Processing, 1994, 36(3): 287-314.[22] Chiang L H, Kotanchek M E, Kordon A K. Fault diagnosis based on Fisher discriminant analysis and support vector machines[J]. Computers & Chemical Engineering, 2004, 28(8): 1389-1401.[23] Jong-Min Lee, ChangKyoo Yoo, Sang Wook Choi, etc. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004(59): 223-234.[24] JIANG Qingchao, YAN Xuefeng. Weighted kernel principal component analysis based on probability density estimation and moving window and its application in nonlinear chemical process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2013(127): 121–131.[25] Wang, X.; Kruger, U.; Irwin, G. W. Process Monitoring Approach Using Fast Moving Window PCA[J]. Industrial and Engineering Chemistry Research, 2005, 44: 5691-5702.[26] Jin, H. D.; Lee, Y. H.; Lee, G.; Han, C. H. Robust recursive principal component analysis modeling for adaptive monitoring[J]. Industrial and Engineering Chemistry Research, 2006, 45: 696-703.[27] Liu, X. Q.; Kruger, U.; Littler, T. Moving window kernel PCA for adaptive monitoring of nonlinear processes[J]. Chemometrics and Intelligent Laboratory Systems, 2009, 96: 132-143.[28] JIANG Qingchao, HUANG Biao, YAN Xuefeng. GMM and optimal principal components-based Bayesian method for multi-mode fault diagnosis[J]. Computers and Chemical Engineering, 2016, 84: 338-349.[29] JIANG Xiaodong, ZHAO Haitao, JIN Bo. Multimode Process Monitoring Based on Sparse Principal Component Selection and Bayesian Inference-Based Probability[J]. Mathematical Problems in Engineering, 2015, https://doi.org/10.1155/2015/465372[30] Yijun Wu, Diju Liu, Xiaofeng Yuan, et al. A just-in-time fine-tuning framework for deep learning of SAE in adaptive data-driven modeling of time-varying industrial processes[J]. IEEE Sensor Journal, 2021, 21(3): 3497-3505.[31] GUO Fan, XIE Ruimin, HUANG Biao. A Deep Learning Just-in-Time Modeling Approach for Soft Sensor Based on Variational Autoencoder[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 197, https://doi.org/10.1016/j.chemolab.2019.103922[32] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow(SECOND EDITION)[M]. Canada: O'Reilly, 2019: 23-31. [33] Geoffrey E. Hinton, Simon Osindero, Yee-Whye Teh. A Fast Learning Algorithm for Deep Belief Nets. Neural Computation, 2006, 18: 1527-1554.[34] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems 25(NIPS), 2012.[35] FAN Yajun, TAO Bo, ZHENG Ying,JANG Shishang. A Data-Driven Soft Sensor Based on Multilayer Perceptron Neural Network with a Double LASSO Approach[J]. DOI 10.1109/TIM.2019.2947126, IEEE[36] ZHANG Zhanpeng, ZHAO Jinsong. A deep belief network based fault diagnosis model for complex chemical processes[J]. Computers and Chemical Engineering, http://dx.doi.org/10.1016/j.compchemeng.2017.02.041[37] JIANG Qingchao, YAN Xuefeng. Learning Deep Correlated Representations for Nonlinear Process Monitoring[J]. DOI 10.1109/TII.2018.2886048, IEEE[38] YUAN Xiaofeng, OU Chen, WANG Yalin, et al. A Layer-Wise Data Augmentation Strategy for Deep Learning Networks and Its Soft Sensor Application in an Industrial Hydrocracking Process[J]. IEEE Trans. Neural Networks Learn. Syst. 2021, 32(8): 3296-3305.[39] WANG Yalin, YANG Haibing, YUAN Xiaofeng, et al. Deep learning for fault-relevant feature extraction and fault classification with stacked supervised auto-encoder[J]. Journal of Process Control, 2020, 92: 79-89.[40] WANG Yalin, WU Dongzhe, YUAN Xiaofeng. A two-layer ensemble learning framework for data-driven soft sensor of the diesel attributes in an industrial hydrocracking process[J]. Journal of Chemometrics, 2019, 33(12).[41] GUO Liang, LI Naipeng, JIA Feng, et al. A recurrent neural network based health indicator for remaining useful life prediction of bearings[J]. Neurocomputing, 2017, 240: 98-109.[42] KE Wensi, HUANG Dexian, YANG Fan, et al. Soft sensor development and applications based on LSTM in deep neural networks[C]. IEEE Symposium Series on Computational Intelligence, SSCI 2017.[43] WANG Yongjian, LI Hongguang, HUANG Jingwen, et al. An Improved Bar-Shaped Sliding Window CNN Tailored to Industrial Process Historical Data with Applications in Chemical Operational Optimizations. Industrial & Engineering Chemistry Research, 2019, 58(47): 21219-21232.[44] WANG Yongjian, ZHANG Yichi, LI Hongguang. Adapted Receptive Field Temporal Convolutional Networks with Bar-Shaped Structures Tailored to Industrial Process Operation Models. Industrial & Engineering Chemistry Research, 2020, 59(13): 5482-5490.[45] GENG Zhiqiang, ZHANG Yanhui, LI Chengfei, et al. Energy optimization and prediction modeling of petrochemical industries: An improved convolutional neural network based on cross-feature. Energy, 2020, 194(1): 116851.[46] YUAN Xiaofeng, LI Lin, WANG Yalin, et al. Deep learning for quality prediction of nonlinear dynamic process with variable attention-based long short-term memory network[J]. The Canadian Journal of Chemical Engineering, 2020, 98(6): 1377-1389.[47] 王晨,赵晨曦,杨杰. Pearson相关系数-BP神经网络法用于加氢装置高压换热器结盐分析[C]. 2019年中国智慧炼化高峰论坛论文集,2019: 55-60.[48] Pablo A. Estévez, Michel Tesmer, Claudio A. Perez, etc. Normalized Mutual Information Feature Selection[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20(2): 189-201.[49] Sepp Hochreiter, J urgen Schmidhuber. Long Short-Term Memory[J]. Neural Computation, 1997, 9: 1735–1780.[50] Ajaya Kumar Pani, Hare Krishna Mohanta. A Survey of Data Treatment Techniques for Soft Sensor Design[J]. Chemical Product and Process Modeling, 2011, 6(1), DOI: 10.2202/1934-2659.1536[51] A. Di Bella, L. Fortuna, S. Grazianil, et al. A Comparative Analysis of the Influence of Methods for Outliers Detection on the Performance of Data Driven Models[C]. IEEE Instrumentation and Measurement Technology Conference, 2007. |