[1]王磊, 曲迪, 姬静远.基于-制备尖晶石微米颗粒的球差校正透射电镜样品[J].电子显微学报, 2021, 40(1):50-54
[2]王晓琦, 金旭, 李建明, et al.聚焦离子束扫描电镜在石油地质研究中的综合应用[J].电子显微学报, 2019, 38(3):303-319
[3]刘伟新, 鲍芳, 俞凌杰, et al.川东南志留系龙马溪组页岩储层微孔隙结构及连通性研究[J][J].石油实验地质, 2016, 7(4):453-459
[4]WINTER D D, MEIRER F, WECKHUYSEN B M.FIB-SEM Tomography Probes the Mesoscale Pore Space of an Individual Catalytic Cracking Particle[J].ACS Catalysis, 2016, 6(5):3158-3167
[5]VOLLMER I, JENKS M J F, GONZáLEZ R M, et al.Plastic Waste Conversion over a Refinery Waste Catalyst[J].Angewandte Chemie, 2021, 29(60):16101-11610
[6]KALIRAI S, BOESENBERG U, FALKENBERG G, et al.X-ray Fluorescence Tomography of Aged Fluid-Catalytic-Cracking Catalyst Particles Reveals Insight into Metal Deposition Processes[J].ChemCatChem, 2015, 7(22):3674-3682
[7]RUIZ-MARTíNEZ J, BEALE A M, DEKA U, et al.Correlating Metal Poisoning with Zeolite Deactivation in an Individual Catalyst Particle by Chemical and Phase-Sensitive X-ray Microscopy[J].Angewandte Chemie International Edition, 2013, 52(23):5983-5987
[8]RISTANOVI? Z, KERSSENS M M, KUBAREV A V, et al.High‐Resolution Single‐Molecule Fluorescence Imaging of Zeolite Aggregates within Real‐Life Fluid Catalytic Cracking Particles[J].Angewandte Chemie International Edition, 2015, 54(6):1836-1840
[9]KALIRAI S, PAALANEN P P, WANG J, et al.Visualizing Dealumination of a Single Zeolite Domain in a Real‐Life Catalytic Cracking Particle[J].Angewandte Chemie, 2016, 55(37):1134-1138
[10]HENDRIKS F C, MEIRER F, KUBAREV A V, et al.Single-Molecule Fluorescence Microscopy Reveals Local Diffusion Coefficients in the Pore Network of an Individual Catalyst Particle[J].Journal of the American Chemical Society, 2017, 139(39):13632-13635
[11]SENTER C, MASTRY M C, ZHANG C C, et al.Role of chlorides in reactivation of contaminant nickel on fluid catalytic cracking (FCC) catalysts[J][J].Applied Catalysis A: General, 2021, 611:1-9
[12]SOLSONA M, NIEUWELINK A-E, MEIRER F, et al.Magnetophoretic Sorting of Single Catalyst Particles[J].Angewandte Chemie International Edition, 2018, 57(33):10589-10594
[13]KARREMAN M A, BUURMANS I L C, AGRONSKAIA A V, et al.Probing the different life stages of a fluid catalytic cracking particle with integrated laser and electron microscopy[J].Chemistry (Weinheim an der Bergstrasse, Germany), 2013, 19(12):3846-3859
[14]IHLI J, JACOB R R, HOLLER M, et al.2017. A three-dimensional view of structural changes caused by deactivation of fluid catalytic cracking catalysts [M], Nature Communications: 809-818.
[15]KRUMEICH F, IHLI J, SHU Y, et al.Structural Changes in Deactivated Fluid Catalytic Cracking Catalysts Determined by Electron Microscopy[J].ACS Catalysis, 2018, 8(5):4591-4599
[16]MEIRER F, KALIRAI S, MORRIS D, et al.Life and death of a single catalytic cracking particle[J][J].Science Advances, 2015, 3(1):1-12
[17]YALURIS G, CHENG W C, PETERS M, et al.2004. Mechanism of fluid cracking catalysts deactivation by Fe [M] //M. OCCELLI, Studies in Surface Science and Catalysis. Elsevier: 139-163.
[18]GAMBINO M, VESELy M, FILEZ M, et al.Nickel Poisoning of a Cracking Catalyst Unravelled by Single Particle X‐ray Fluorescence‐Diffraction‐Absorption Tomography[J].Angewandte Chemie International Edition, 2019, 59(10):3922-3927
[19]JIANG H.Silicon enrichment on iron contaminated fluid catalytic cracking catalyst particle surface[J].Journal of Catalysis, 2020, 382(11):31-39
[20]NIEUWELINK A-E, VELTHOEN M E Z, NEDERSTIGT Y C M, et al.Single Particle Assays to Determine Heterogeneities within Fluid Catalytic Cracking Catalysts[J].Chemistry – A European Journal, 2020, 26(39):8546-8554
[21]MATHIEU Y, CORMA A, ECHARD M, et al.Single and combined Fluidized Catalytic Cracking (FCC) catalyst deactivation by iron and calcium metal–organic contaminants[J].[J].Applied Catalysis A: General, 2014, 469:451-465
[22]WALLENSTEIN D, FARMER D, KNOELL J, et al.Progress in the deactivation of metals contaminated FCC catalysts by a novel catalyst metallation method[J].[J].Applied Catalysis A: General, 2013, 463(462):91-99
[23]LIU Y, MEIRER F, KREST C M, et al.Relating structure and composition with accessibility of a single catalyst particle using correlative 3-dimensional micro-spectroscopy[J].Nature Communications, 2016, 7(1):1-8
[24]ZHOU Q, QI Y, LIU Q, et al.A detailed speciation of iron on FCC catalysts based on an integrated use of advanced characterisation methods and thermodynamic equilibrium simulation[J].Applied Catalysis A: General, 2020, 599(3):1-14
[25]IHLI J, FERREIRA?SANCHEZ D, JACOB R R, et al.Localization and Speciation of Iron Impurities within a Fluid Catalytic Cracking Catalyst[J].Angewandte Chemie International Edition, 2017, 56(45):14031-14035
[26]WISE A M, WEKER J N, KALIRAI S, et al.Nanoscale Chemical Imaging of an Individual Catalyst Particle with Soft X-ray Ptychography[J].ACS Catalysis, 2016, 6(4):2178-2181
[27]ETIM U J, BAI P, ULLAH R, et al.Vanadium contamination of FCC catalyst: Understanding the destruction and passivation mechanisms[J]. [J].Applied Catalysis A: General, 2018, 555:108-117
[28]SOUZA N L A, TKACH I, MORGADO E, et al.Vanadium poisoning of FCC catalysts: A quantitative analysis of impregnated and real equilibrium catalysts[J]. [J].Applied Catalysis A: General, 2018, 560:206-214 |