[1] A Perspective on Smart Process Manufacturing Research Challenges for Process Systems Engineers [J]. Engineering, 2017, 3(2): 161-5,76-81.[2] QIAN F. Smart Process Manufacturing Systems: Deep Integration of Artificial Intelligence and Process Manufacturing [J]. Engineering 2019, 5(6): 981.[3] CHEN P, TOYOTA T, LIN Y, et al. Failure diagnosis of machinery by self-reorganization of symptom parameters in time domain using genetic algorithms [J]. The International Journal of Intelligent Control and Systems, 1999, 3(4): 571-85.[4] LO C H, WONG Y K, RAD A B. Intelligent System for Process Supervision and Fault Diagnosis in Dynamic Physical Systems [J]. IEEE Transactions on Industrial Electronics, 2006, 53(2): 581-92.[5] PAIXAO K. Feature engineering for machine learning and data analytics [J]. Computing reviews, 2019, 60(6): 242.[6] SHANG C, YOU F. Data Analytics and Machine Learning for Smart Process Manufacturing: Recent Advances and Perspectives in the Big Data Era [J]. Engineering, 2019, 5(6): 1010-6.[7] 王翔. 基于深度学习的故障诊断算法研究 [D]; 浙江理工大学, 2020.WANG X. Research on Deep Learning Base Fault Diagnosis Algorithms [D]; Zhejiang University of Science and Technology, 2020.[8] 齐长兴, 毕义明, 李勇, 等. 改进的萤火虫算法优化BP神经网络及应用 [J]. 现代防御技术, 2018, 46(05): 32-8.QI C X,BI Y M,LI Y, et al. BP Neural Network Optimized by Approved Firefly Algorithm and Its Application. [J]. Modern Defence Technology, 2018, 46(05): 32-8.[9] 田雨波, 潘朋朋. 粒子群算法优化神经网络结构的研究 [J]. 现代电子技术, 2011, 34(04): 110-2.TIAN Y B, PAN P P. Particle Swarm Algorithm Used for Optimizing Neural Network Structure [J]. Modern Electronics Technique, 2011, 34(04): 110-2.[10] 衷路生, 夏相明. 基于深度残差网络的化工过程故障诊断 [J]. 过程工程学报, 2020, 20(12): 1483-90.ZHONG L S, XIA X M. Fault diagnosis for chemical processes based on deep residual network (in Chinese). [J]. The Chinese Journal of Process Engineering, 2020, 20(12): 1483-90.[11] 曹美, 崔国民, 肖媛, 等. 换热网络优化中换热单元均布处理的周期性影响分析 [J]. 热能动力工程, 2020, 35(06): 15-21+142.CAO M,CUI G-M,XIAO Y,et al. Periodic analysis on even distribution of heat exchanger units in heat exchanger network optimization[J]. Journal of Engineering for Thermal Energy and Power,2020,35( 6): 15-21+142.[12] 王世豪, 田一彤, 李绍军. 基于双层优化策略的柔性换热网络同步优化方法[J]. 高校化学工程学报, 2021, 35(05): 905-14.WANG S H, TIAN Y T, Li S J. A simultaneous synthesis based on a bi-level optimization strategy for flexible heat exchanger network [J]. Journal of Chemical Engineering of Chinese Universities, 2021, 35(05): 905-14.[13] 王子健, 车景华, 宋昭峥, 等. AEA在常减压装置换热网络优化中的应用分析 [J]. 石油石化绿色低碳, 2021, 6(04): 17-21+51.WANG Z J,CHE J H,SONG Z Z, et al. Application Analysis of AEA Optimization in Heat Exchange Network of AVU [J]. Green Petroleum & Petrochemicals, 2021, 6(04): 17-21+51.[14] 齐少宁. 煤制甲醇基于温差贡献值〖△T〗_con的能效优化 [D]; 天津大学, 2014.QI S N. Energy efficiency optimization of coal to methanol process based on temperature difference contribution〖△T〗_con [D]; Tianjin University, 2014.[15] Mechanical Properties Prediction of the Mechanical Clinching Joints Based on Genetic Algorithm and BP Neural Network [J]. Chinese Journal of Mechanical Engineering, 2009, 22(1): 36-41.[16] XIAO M, ZHANG W, Wen K, et al. Fault Diagnosis Based on BP Neural Network Optimized by Beetle Algorithm [J]. Chinese Journal of Mechanical Engineering, 2021, 34(6): 252-61.[17] 李仑.乙烯装置脱甲烷系统中甲烷分离浅析 [J]. 乙烯工业, 2021, 33(03): 33-7+4.LI L. Discussion on Methane Separation in Demethanation System of Ethylene Plant [J]. Ethylene Industry, 2021, 33(03): 33-7+4.[18] 张黎骅, 赵超, 李庆东, 等. 基于Matlab6.5的归一化二阶系统单位阶跃响应的模拟演示 [J]. 中国农机化, 2005, (03): 35-8.ZHANG L H, ZHAO C, Li Q D, et al. Computer Simulation of Fundamental Second-order System’s Response to Unit Step Function Base on Matlab6.5 [J]. Chinese Agricultural Mechanization, 2005, (03): 35-8. |