[1] 陈立功, 白国义. 醇的催化胺化反应及其在医药中间体合成中的应用[J]. 精细与专用化学品, 2004, (17): 6-9.[2] Fatty Amines Market. https://www.marketsandmarkets.com/Market-Reports/amines-market-724.html[3] 潘嘉晟, 王耀锋, 马爽爽, 等. 脂肪伯胺的合成及工业化研究进展[J]. 过程工程学报, 2021, 21(08): 905-917.[4] 俞杰, 龙奕华, 李汪涛, 等. 伯胺类化合物合成研究进展[J]. 高校化学工程学报, 2021, 35(06): 955-965.[5] 余秦伟, 惠丰, 张前, 等. 醇还原胺化反应催化剂研究进展[J]. 化工进展, 2018, 37(10): 3832-3842.[6] 阮诗想, 阮建成, 钱超, 等. 均相醇胺化反应催化剂研究进展[J]. 现代化工, 2019, 39(S1): 74-78.[7] 刘迎新, 舒慧敏, 刘海燕, 等. 非均相金属催化剂催化醇类还原胺化合成伯胺的研究进展[J]. 高校化学工程学报, 2018, 32(03): 487-498.[8] Zhou K, Xie R, Xiao M, et al. Direct amination of biomass-based furfuryl alcohol and 5-(aminomethyl)-2-furanmethanol with NH3 over hydrotalcite-derived nickel catalysts via the hydrogen-borrowing strategy[J]. ChemCatChem, 2021, 13(8): 2074-2085.[9] Wang T, Iba?ez J, Wang K, et al. Rational design of selective metal catalysts for alcohol amination with ammonia[J]. Nature Catalysis, 2019, 2(9): 773-779.[10] Wang Y, Furukawa S, Fu X, et al. Organonitrogen chemicals from oxygen-containing feedstock over heterogeneous catalysts[J]. ACS Catalysis, 2020, 10(1): 311-335.[11] Cui X, Dai X, Deng Y, et al. Development of a general non-noble metal catalyst for the benign amination of alcohols with amines and ammonia[J]. Chemistry-A European Journal, 2013, 19(11): 3665-3675.[12] Tomer A, Wyrwalski F, Przybylski C, et al. acile preparation of Ni/Al2O3 catalytic formulations with the aid of cyclodextrin complexes: Towards highly active and robust catalysts for the direct amination of alcohols[J]. Journal of Catalysis, 2017, 356: 111-124.[13] Tomer A, Kusema B T, Paul J-F, et al. Cyclodextrin-assisted low-metal Ni-Pd/Al2O3 bimetallic catalysts for the direct amination of aliphatic alcohols[J]. Journal of Catalysis, 2018, 368: 172-189.[14] Tomer A, Yan Z, Ponchel A, et al. Mixed oxides supported low-nickel formulations for the direct amination of aliphatic alcohols with ammonia[J]. Journal of Catalysis, 2017, 356: 133-146.[15] Wang B, Ding Y, Lu K, et al. Host-guest chemistry immobilized nickel nanoparticleson zeolites as efficient catalysts for amination of 1-octanol[J]. Journal of Catalysis, 2020, 381: 443-453.[16] Shimizu K-I, Kon K, Onodera W, et al. Heterogeneous Ni catalyst for direct synthesis of primary amines from alcohols and ammonia[J]. ACS Catalysis, 2013, 3(1): 112-117.[17] Shimizu K-I, Imaiida N, Kon K, et al. Heterogeneous Ni catalysts for N-Alkylation of amines with alcohols[J]. ACS Catalysis, 2013, 3(5): 998-1005.[18] Shimizu K-I, Kanno S, Kon K, et al. N-alkylation of ammonia and amines with alcohols catalyzed by Ni-loaded CaSiO3[J]. Catalysis Today, 2014, 232: 134-138.[19] Li S Z, Wen M, Chen H, et al. Amination of isopropanol to isopropylamine over a highly basic and active Ni/LaAlSiO catalyst[J]. Journal of Catalysis, 2017, 350: 141-148.[20] Ho C R, Defalque V, Zheng S, et al. Propanol amination over supported nickel catalysts: reaction mechanism and role of the support[J]. ACS Catalysis, 2019, 9(4): 2931-2939.[21] Wang S, Lan X, Liu B, et al. Boosting amination of 1-octanol to 1-octylamine via metal-metal oxide interactions in NixFe1/Al2O3 Catalysts[J]. ChemCatChem, 2022, 14(7): [22] Wang S, Li Y, Lan X, et al. Combining Ni3P and Lewis acid-base pair as a high-performance catalyst for amination of 1-octanol[J]. Catalysis Letters, 2022: [23] Zhou K, Liu H Y, Shu H M, et al. A comprehensive study on the reductive amination of 5-hydroxymethylfurfural into 2,5-bisaminomethylfuran over Raney Ni through DFT calculations[J]. ChemCatChem, 2019, 11(11): 2649-2656.[24] Cho J H, Park J-H, Chang T-S, et al. Reductive amination of 2-propanol to monoisopropylamine over Ni/γ-Al2O3 catalysts[J]. Catalysis Letters, 2013, 143(12): 1319-1327.[25] Cho J H, Park J H, Chang T-S, et al. Reductive amination of 2-propanol to monoisopropylamine over Co/γ-Al2O3 catalysts[J]. Applied Catalysis A: General, 2012, 417-418: 313-319.[26] Hong E, Bang S, Cho J H, et al. Reductive amination of isopropanol to monoisopropylamine over Ni-Fe/gamma-Al2O3 catalysts: Synergetic effect of Ni-Fe alloy formation[J]. Applied Catalysis A: General, 2017, 542: 146-153.[27] 白国义, 陈立功. 双官能团醇类化合物催化胺化反应的研究进展[J]. 化学进展, 2005, (02): 293-298.[28] 余秦伟, 王为强, 张前, 等. 基于多元醇还原胺化合成多元胺的催化剂研究进展[J]. 精细石油化工, 2019, 36(02): 73-77.[29] Ma L, Yan L, Lu A-H, et al. Effect of Re promoter on the structure and catalytic performance of Ni-Re/Al2O3 catalysts for the reductive amination of monoethanolamine[J]. RSC Advances, 2018, 8(15): 8152-8163.[30] Ma L, Yan L, Lu A H, et al. Effects of Ni particle size on amination of monoethanolamine over Ni-Re/SiO2 catalysts[J]. Chinese Journal of Catalysis, 2019, 40(4): 567-579.[31] Wu Y J, Yuan H K, Shi F. Sustainable catalytic amination of diols: From cycloamination to monoamination[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 1061-1067.[32] Dai X, Rabeah J, Yuan H, et al. Glycerol as a building block for prochiral aminoketone, N-formamide, and N-methyl amine synthesis[J]. ChemSusChem, 2016, 9(22): 3133-3138.[33] Ernst M, Hoffer B W, Melder J P. Method for producing amines from glycerin: US, 20100240894A1[P]. 2010-09-23.[34] Arredondo V, Manuel, Corrigan P, Joseph. Process for the conversion of glycerol to propylene glycol and amino alcohols: US, 07619118B2[P]. 2009-11-17.[35] Ibanez J, Kusema B T, Paul S, et al. Ru and Ag promoted Co/Al2O3 catalysts for the gas-phase amination of aliphatic alcohols with ammonia[J]. Catalysis Science & Technology, 2018, 8(22): 5858-5874.[36] Ibanez J, Araque-Marin M, Paul S, et al. Direct amination of 1-octanol with NH3 over Ag-Co/Al2O3: Promoting effect of the H2 pressure on the reaction rate[J]. Chemical Engineering Journal, 2019, 358: 1620-1630.[37] Tong T, Guo W, Liu X, et al. Dual functions of CoOx decoration in PtCo/CeO2 catalysts for the hydrogen-borrowing amination of alcohols to primary amines[J]. Journal of Catalysis, 2019, 378: 392-401.[38] Niu F, Bahri M, Ersen O, et al. A multifaceted role of a mobile bismuth promoter in alcohol amination over cobalt catalysts[J]. Green Chemistry, 2020, 22(13): 4270-4278.[39] Niu F, Xie S H, Bahri M, et al. Catalyst deactivation for enhancement of selectivity in alcohols amination to primary amines[J]. ACS Catalysis, 2019, 9(7): 5986-5997.[40] Yue C-J, Di K, Gu L-P, et al. Selective amination of 1,2-propanediol over Co/La3O4 catalyst prepared by liquid-phase reduction[J]. Molecular Catalysis, 2019, 477: 110539.[41] Niemeier J, Engel R V, Rose M. Is water a suitable solvent for the catalytic amination of alcohols?[J]. Green Chemistry, 2017, 19(12): 2839-2845.[42] Fang L, Yan Z, Vits K, et al. Nanoceria-promoted low Pd-Ni catalyst for the synthesis of secondary amines from aliphatic alcohols and ammonia[J]. Catalysis Science & Technology, 2019, 9(5): 1215-1230.[43] Ball M R, Wesley T S, Rivera-Dones K R, et al. Amination of 1-hexanol on bimetallic AuPd/TiO2 catalysts[J]. Green Chemistry, 2018, 20(20): 4695-4709.[44] Dumon A S, Wang T, Ibanez J, et al. Direct n-octanol amination by ammonia on supported Ni and Pd catalysts: activity is enhanced by "spectator" ammonia adsorbates[J]. Catalysis Science & Technology, 2018, 8(2): 611-621.[45] Liang G, Zhou Y, Zhao J, et al. Structure-sensitive and insensitive reactions in alcohol amination over nonsupported Ru nanoparticles[J]. ACS Catalysis, 2018, 8(12): 11226-11234.[46] Niu F, Xie S, Yan Z, et al. Alcohol amination over titania-supported ruthenium nanoparticles[J]. Catalysis Science & Technology, 2020, 10(13): 4396-4404.[47] Fang L, Yan Z, Wu J, et al. Highly selective Ru/HBEA catalyst for the direct amination of fatty alcohols with ammonia[J]. Applied Catalysis B: Environmental, 2021, 286: 119942.[48] Kita Y, Kuwabara M, Yamadera S, et al. Effects of ruthenium hydride species on primary amine synthesis by direct amination of alcohols over a heterogeneous Ru catalyst[J]. Chemical Science, 2020, 11(36): 9884-9890.[49] Ruiz D, Aho A, Saloranta T, et al. Direct amination of dodecanol with NH3 over heterogeneous catalysts. Catalyst screening and kinetic modelling[J]. Chemical Engineering Journal, 2017, 307: 739-749.[50] Ruiz D, Aho A, Maki-Arvela P, et al. Direct amination of dodecanol over noble and transition metal supported silica catalysts[J]. Industrial & Engineering Chemistry Research, 2017, 56(45): 12879-12888.[51] Li Y, Cheng H, Zhang C, et al. Reductive amination of 1,6-hexanediol with Ru/Al2O3 catalyst in supercritical ammonia[J]. Science China Chemistry, 2017, 60(7): 920-926.[52] Wang Y, Furukawa S, Song S, et al. Catalytic production of alanine from waste glycerol[J]. Angewandte Chemie International Edition, 2020, 59(6): 2289-2293. |