石油炼制与化工 ›› 2023, Vol. 54 ›› Issue (9): 24-32.
王子淇1,王仲戎1,郝媛媛2,姜伟丽1,李继聪1,王岩1,周广林1,周红军1
收稿日期:
2023-02-20
修回日期:
2023-05-06
出版日期:
2023-09-12
发布日期:
2023-08-29
通讯作者:
王子淇
E-mail:wzq13791285608@163.com
基金资助:
Received:
2023-02-20
Revised:
2023-05-06
Online:
2023-09-12
Published:
2023-08-29
摘要: 随着社会的发展,环境保护越来越受到人们的重视,对传统能源的清洁性也提出了越来越高的要求。汽油、柴油、喷气燃料等燃料中存在大量含硫有机物,是造成环境污染的主要原因之一,因此脱除燃料油中硫化物的方法被人们重点研究,其中氧化脱硫和吸附脱硫相比于其他脱硫方法具有脱硫效率高、脱除条件温和且可操作性和实用性强的优势。金属有机骨架材料(MOFs)是一种新兴材料,其具有高孔隙率、可调节的孔结构和易于修饰等优点,使得MOFs材料相比于其他的催化剂具有更好的脱硫效果,因此近年来受到人们的广泛关注。综述了MOFs材料近几年在吸附脱硫、氧化脱硫领域的研究,并对MOFs材料在脱硫领域的前景进行了展望。
王子淇 王仲戎 郝媛媛 姜伟丽 李继聪 王岩 周广林 周红军. 金属-有机骨架材料用于燃料油脱硫的研究进展[J]. 石油炼制与化工, 2023, 54(9): 24-32.
[1]Carl-Henry G.Burning Up: A Global History of Fossil Fuel Consumption[J].Journal of American History, 2020, 106(4):- [2]Hassan S, Azam K, Akhtar M N, et al.A Review on the Methods in Diesel Desulfurization[J].Current Analytical Chemistry, 2021, 17(6):- [3]Lyu Y C, Sun Z W, Xin Y, et al.Reactivation of spent S-Zorb adsorbents for gasoline desulfurization[J].Chemical Engineering Journal, 2019, 374:- [4]Jeff T.Warning from COP27: fossil-fuel emissions have hit a new high[J].Nature, 2022, :- [5]Reza K N M, Hadi S M, Asadi R A, et al.Desulfurization of liquid fuels using aluminum modified mesoporous adsorbent: towards experimental and kinetic investigations[J].Scientific Reports, 2021, 11(1), 2021, 11(1):- [6]Jain M, Gupta S K.Desulfurization of FCC gasoline by using spiral wound pervaporation module: Removal of different types of sulfur containing species[J].Chemical Engineering Research and Design, 2018, 136:105-118 [7]Md. A remarkable adsorbent for removal of nitrogenous compounds from fuel: A metal–organic framework functionalized both on metal and ligand[J].Chemical Engineering Journal, 2021, 404:- [8]Daria P, Valentina L, Evgenii I, et al.Energy Basics of Catalytic Hydrodesulfurization of Diesel Fuels[J].Catalysts, 2022, 12(11):- [9]Roman F F, Diaz de Tuesta Jose L, Silva Adrián M T, et al.Carbon-Based Materials for Oxidative Desulfurization and Denitrogenation of Fuels: A Review[J].Catalysts, 2021, 11(10):- [10]Yang Z D, Liu Z G, Aleksandra S, et al.Microbiological Sulfide Removal—From Microorganism Isolation to Treatment of Industrial Effluent[J].Microorganisms, 2021, 9(3):- [11]Faezeh M, Salman M, Amin S M, et al.Current status and future prospects of oxidative desulfurization of naphtha: a review[J].Process Safety and Environmental Protection, 2022, 12(14):- [12]Wang E L, Yang F H, Song M Y, et al.Recent advances in the unsupported catalysts for the hydrodesulfurization of fuel[J].Fuel Processing Technology, 2022, 235:- [13]Sharif A B, Omar H L, Kosar H A, et al.Oxidative Desulfurization of Real High-Sulfur Diesel Using Dicarboxylic Acid/H2O2 System[J].Processes, 2022, 10(11):- [14]Hao L, Hurlock M J, Ding G, et al.Metal-organic frameworks towards desulfurization of fuels[J].Topics in Current Chemistry, 2020, 378(1):17- [15]Zhang Y Q, Yang W L, Yang X, et al.Rational design of efficient polar heterogeneous catalysts for catalytic oxidative-adsorptive desulfurization in fuel oil[J].Applied Catalysis A, General, 2022, 632:- [16]Fang M Y, Montoro C, Semsarilar M.Metal and covalent organic frameworks for membrane applications[J].Membranes, 2020, 10(5):55- [17]Kalaj M, Cohen S M.Postsynthetic modification: An enabling technology for the advancement of metal-organic frameworks[J].ACS Central Science, 2020, 6(7):1046-1057 [18]Lee K X, Valla J A.Adsorptive desulfurization of liquid hydrocarbons using zeolite-based sorbents: a comprehensive review[J].Reaction Chemistry & Engineering, 2019, 4(8):1357-1386 [19]Azeez M O, Abdul K T, Khalid A, et al.Synergistic effect of nitrogen and molybdenum on activated carbon matrix for selective adsorptive Desulfurization: Insights into surface chemistry modification[J].Arabian Journal of Chemistry, 2022, 15(1):- [20]Yin L X, Xu J C, Zhang B, et al.A facile fabrication of highly dispersed CeO2/SiO2 aerogel composites with high adsorption desulfurization performance[J].Chemical Engineering Journal, 2022, 428:- [21]Song Y, Peng B, Yang X, et al.Trail of sulfur during the desulfurization via reactive adsorption on Ni/ZnO[J].Green Energy & Environment, 2020, :- [22]Cychosz K A, Wong F, Matzger A J.Liquid phase adsorption by microporous coordination polymers: Removal of organosulfur compounds[J].Journal of the American Chemical Society, 2008, 130(22):6938-6939 [23]Cychosz K A, Wong F, Matzger A J.Enabling cleaner fuels: desulfurization by adsorption to microporous coordination polymers[J].Journal of the American Chemical Society, 2009, 131(40):14538-14543 [24]Gao Y, Wu J F, Wang S, et al.Design and fabrication of a novel water- and heat-resistant Cu-based coordination compound for dibenzothiophene capture[J].Energy Fuels, 2020, 34(4):4508-4515 [25]Kabtamu D M, Wu Y N, Chen Q, et al.Facile Upcycling of Hazardous Cr-Containing Electroplating Sludge into Value-Added Metal–Organic Frameworks for Efficient Adsorptive Desulfurizatio[J].ACS Sustainable Chemistry & Engineering, 2020, 8(33):- [26]Bagheri M, Masoomi M Y, Morsali A.High organic sulfur removal performance of a cobalt based metal-organic framework[J].Journal of Hazardous Materials, 2017, 331:142-149 [27]Tian F, Ru Q, Qiao C, et al.Adsorption desulfurization of model gasoline by metal–organic framework Ni3(BTC)2[J].Journal of Energy Chemistry, 2019, 32:8-14 [28]Xu W, Gang L, Li W, et al.Facile room temperature synthesis of metal–organic frameworks from newly synthesized copperzinc hydroxide and their application in adsorptive desulfurization[J].RSC Advances, 2016, 6(44):37530-37534 [29] Yj A, Jw A, Jw A, et al.Highly efficient capture of benzothiophene with a novel water-resistant-bimetallic Cu-ZIF-8 material - ScienceDirect[J].Inorganica Chimica Acta, 2020, 503:- [30]Zhang X F, Wang Z, Feng Y, et al.Adsorptive desulfurization from the model fuels by functionalized UiO-66(Zr)[J].Fuel, 2018, 234(DEC.15):256-262 [31]Huo Q, Li J S, Qi X R, et al.Cu, Zn-embedded MOF-derived bimetallic porous carbon for adsorption desulfurization[J].Chemical Engineering Journal, 2019, 378:- [32]Shi S, Li Y X, Li S S, et al.Fabrication of Cu+ sites in confined spaces for adsorptive desulfurization by series connection double-solvent strategy[J].Green Energy & Environment, 2020, :- [33]Habimana F, Shi D, Ji S.Synthesis of Cu-BTC/Mt composites porous materials and their performance in adsorptive desulfurization process[J].Applied Clay Science, 2018, 152:303-310 [34]Feng T, Wang Y, Wu Y, et al.A feasible linker transformation strategy towards the formation of Cu2O nanoparticles for immobilization in hierarchical CuBTC for adsorption desulfurization[J].Journal of Materials Chemistry A, 2020, 8(17):8678-8683 [35]Aslam S, Subhan F, Yan Z, et al.Dispersion of nickel nanoparticles in the cages of metal-organic framework: An efficient sorbent for adsorptive removal of thiophene[J].Chemical Engineering Journal, 2017, 315:469-480 [36]Gao Y, Wu J F, Xiong X Q, et al.Enhanced dibenzothiophene capture with multimetal–organic frameworks in the presence of benzene and octane[J].Industrial & Engineering Chemistry Research, 2020, 59(16):7849-7856 [37]Chen M, Zhang Y, Chen J, et al.Investigation of attapulgitemodified Fe3O4MOF-199 and its adsorptive desulfurization performance[J].Journal of Materials Science, 2022, 57(7):4528-4540 [38]Zhu L, Zhu L, Jia X, et al.Structure and adsorptive desulfurization performance of the composite material MOF-5@AC[J].New Journal of Chemistry, 2018, :- [39]Song H, Li X, Jiang B, et al.Preparation of Novel and Highly Stable PyMOF and Its Adsorptive Desulfurization Performance[J].Industrial & Engineering Chemistry Research, 2019, 58(42):19586-19598 [40]Bhadra B N, Jhung S H.Oxidative desulfurization and denitrogenation of fuels using metal-organic framework-based-derived catalysts[J].Applied Catalysis B: Environmental, 2019, 259(15):118021-118045 [41]Sun J, Abednatanzi S, Voort P, et al.POM@MOF hybrids: Synthesis and applications[J].Catalysts, 2020, 10(5):578-608 [42]Vallés G C, Santiago P A, álvaro M, et al.MIL-101(Cr)-NO2 as efficient catalyst for the aerobic oxidation of thiophenols and the oxidative desulfurization of dibenzothiophenes[J].Applied Catalysis A: General, 2020, 590(25):117340-117947 [43]Gomez P, Santiago P, Navalón S, et al.MIL-101 promotes the efficient aerobic oxidative desulfurization of dibenzothiophenes[J].Green Chemistry, 2016, 18(2):508-515 [44]Ye G, Sun Y Y, Zhang D, et al.Hierarchical porous titanium terephthalate based material with highly active sites for deep oxidative desulfurization[J].Microporous and Mesoporous Materials, 2018, 270:241-247 [45]Li X, Gu Y, Chu H, et al.MFM-300(V) as an active heterogeneous catalyst for deep desulfurization of fuel oil by aerobic oxidation[J].Applied Catalysis A: General, 2019, 584(25):117152-117157 [46]Chu L, Guo J Z, Wang L Y, et al.Synthesis of defected UIO‐66 with boosting the catalytic performance via rapid crystallization[J].Applied Organometallic Chemistry, 2021, 36(3):- [47]Gu Y, Ye G, Xu W, et al.Creation of active sites in MOF-808(Zr) by a facile route for oxidative desulfurization of model diesel oil[J].ChemistrySelect, 2020, 5(1):244-251 [48]Hao L, Hurlock M, Li X, et al.Efficient oxidative desulfurization using a mesoporous Zr-based MOF[J].Catalysis Today, 2020, 350:64-70 [49]Misra A, Kozma K, Streb C, et al.Beyond Charge Balance: Counter-Cations in Polyoxometalate Chemistry[J].Angewandte Chemie International Edition, 2019, 59(2):596-612 [50]Fu J, Yu G, Ma W, et al.Syntheses and ultra-deep desulfurization performance of sandwich-type polyoxometalate-based TiO2 nanofibres[J].Journal of Materials Science, 2018, 53(22):- [51]Lu Y K, Yue C L, Liu B X, et al.The encapsulation of POM clusters into MIL-101(Cr) at molecular level: LaW10O36@MIL-101(Cr), an efficient catalyst for oxidative desulfurization[J].Microporous and Mesoporous Materials, 2021, 311:- [52]Mohammadi N F, Shahrokh S, Mehran .Cobalt-based sandwich-type polyoxometalate supported on amino-silane decorated magnetic graphene oxide: A recoverable catalyst for extractive-catalytic oxidative desulfurization of model oil[J].Journal of Environmental Chemical Engineering, 2022, 10(3):- [53]Gao Y, Liu Z, Hu G, et al.Design and synthesis heteropolyacid modified mesoporous hybrid material CNTs@MOF-199 catalyst by different methods for extraction-oxidation desulfurization of model diesel[J].Microporous and Mesoporous Materials, 2020, 291(1):109702-109713 [54]Chang X, Yang X F, Qiao Y, et al.Confined heteropoly blues in defected Zr-MOF (bottle around ship) for high-efficiency oxidative desulfurization[J].Small, 2020, 16(14):1906432-1906444 [55]Peng Y L, Liu J, Zhang H F, et al.A size-matched POM@MOF composite catalyst for highly efficient and recyclable ultra-deep oxidative fuel desulfurization[J].Inorganic Chemistry Frontiers, 2018, 5(7):1563-1569 [56]Lin Z J, Zheng H Q, Chen J, et al.Encapsulation of phosphotungstic acid into metal-organic frameworks with tunable window sizes: screening of PTA@MOF catalysts for efficient oxidative desulfurization[J].Inorganic Chemistry, 2018, 57(20):13009-13019 [57]Qi Z, Qiu T, Wang H, et al.Synthesis of ionic-liquid-functionalized UiO-66 framework by post-synthetic ligand exchange for the ultra-deep desulfurization[J].Fuel, 2020, 268:- [58]Liu S Q, Li X N, Zhang H.Synergistic effects of MOF-76 on layered double hydroxides with superior activity for extractive catalytic oxidative desulfurization[J].New Journal of Chemistry, 2020, 44(16):6269-6276 [59]Li S, Wang W, Zhao J S.Highly effective oxidative desulfurization with magnetic MOF supported W-MoO3 catalyst under oxygen as oxidant[J].Applied Catalysis B: Environmental, 2020, 277(15):119224-119233 [60]Wang C, Li A, Ma Y, et al.Preparation of formate-free PMA@MOF-808 catalysts for deep oxidative desulfurization of model fuels[J].Environmental Science and Pollution Research, 2022, 29(26):39427-39440 [61]Lu Y, Yue C, Liu B, et al.The encapsulation of POM clusters into MIL-101(Cr) at molecular level: LaW10O36@MIL-101(Cr), an efficient catalyst for oxidative desulfurization[J].Microporous and Mesoporous Materials, 2021, 311:110694- [62]Gu Y, Ye G, Xu W, et al.Creation of Active Sites in MOF‐808(Zr) by a Facile Route for Oxidative Desulfurization of Model Diesel Oil[J].ChemistrySelect, 2020, 5(1):244-251 [63]Ji H F, Liu S T, Shi H F, et al.Phosphomolybdic acid-based sulfur-containing metal–organic framework as an efficient catalyst for dibenzothiophene oxidative desulfurization[J].Journal of Sulfur Chemistry, 2022, 43(3):314-326 [64]Sun M, Chen W C, Zhao L, et al.A PTA@MIL-101(Cr)-diatomite composite as catalyst for efficient oxidative desulfurization[J].Inorganic Chemistry Communications, 2018, 87:30-35 [65]Yue S, Song Q, Zang S, et al.Synthesis of polyoxomolybdate-quinoline compounds beads for catalytic oxidative desulfurization[J].Molecular Catalysis, 2018, 455:88-94 [66]Yan G A, Zhe L A, Gh B, et al.Design and synthesis heteropolyacid modified mesoporous hybrid material [emailprotected] catalyst by different methods for extraction-oxidation desulfurization of model diesel[J].Microporous and Mesoporous Materials, 2020, 291:109702- [67]Lin Z J, Zheng H Q, Chen J, et al.Encapsulation of Phosphotungstic Acid into Metal–Organic Frameworks with Tunable Window Sizes: Screening of PTA@MOF Catalysts for Efficient Oxidative Desulfurization[J].Inorganic Chemistry, 2018, 57:- [68]Wang C, Li A, Ma Y, et al.Preparation of formate-free PMA@MOF-808 catalysts for deep oxidative desulfurization of model fuels[J].Environmental Science and Pollution Research, 2022, 29(26):39427-39440 |
[1] | 董松涛 赵阳 赵广乐 胡志海 莫昌艺. 加氢裂化催化剂RHC-133的开发与应用[J]. 石油炼制与化工, 2024, 55(3): 1-8. |
[2] | 张丰胜 王新平 王文婷 李勍 杨剑 蓝兴英 石孝刚 赵法志. "碳双控"形势下炼化企业的生产经营计划优化[J]. 石油炼制与化工, 2024, 55(2): 153-159. |
[3] | 张雨 管泽坤 赵亭 潘原 柳云骐. Ni/ZnO-Zn/ZSM-5双功能耦合催化剂的制备及反应吸附脱硫耦合芳构化反应性能研究[J]. 石油炼制与化工, 2024, 55(2): 160-167. |
[4] | 张国豪 李海争 赵亮 高金森 徐春明. 非噻吩类硫化物吸附剂制备及烯烃对吸附效果影响[J]. 石油炼制与化工, 2024, 55(1): 145-151. |
[5] | 李大东 . 我国炼油工业转型发展的技术策略[J]. 石油炼制与化工, 2024, 55(1): 7-17. |
[6] | 师黎明 杨鹤 任强 李妍 龙军. 重质船用燃料油的沥青质组分在柴油中的相行为模拟研究[J]. 石油炼制与化工, 2023, 54(9): 33-40. |
[7] | 王明华. 国内氢能应用场景分析及发展前景预测[J]. 石油炼制与化工, 2023, 54(9): 18-23. |
[8] | 李娜 聂红 于博 渠红亮 黄卫国 王鲁强 张锐 陶志平 . 催化剂制备过程及使用寿命对喷气燃料生产工艺碳排放的影响[J]. 石油炼制与化工, 2023, 54(9): 105-113. |
[9] | 史晓迪 于博 李妍. 炼油厂低硫重质船用燃料油典型生产方案研究[J]. 石油炼制与化工, 2023, 54(8): 8-14. |
[10] | 董松涛 赵广乐 胡志海 赵阳. 加氢裂化催化剂RHC-131的开发及其工业应用[J]. 石油炼制与化工, 2023, 54(8): 51-57. |
[11] | 郑伟平 朱忠朋 陶志平 赵杰 伏朝林 闫瑞. 高密度笼状烃五环[5.3.0.02,5.03,9.04,8]十烷的制备及应用研究[J]. 石油炼制与化工, 2023, 54(7): 71-75. |
[12] | 成欣 邓军 刘琼 张建荣. 聚醚胺燃油清净剂的合成及构效关系[J]. 石油炼制与化工, 2023, 54(7): 76-83. |
[13] | 胡佳宇 赵洋 李秀强. 柴油加氢改质装置由FD2G技术转为FDHC技术的应用[J]. 石油炼制与化工, 2023, 54(7): 91-97. |
[14] | 余立公. 催化裂化装置采用LTAG工艺回炼不同物料的效果[J]. 石油炼制与化工, 2023, 54(6): 18-25. |
[15] | 张春生. S Zorb装置长周期平稳运行优化措施[J]. 石油炼制与化工, 2023, 54(6): 12-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||