[1]P.Tian,YWei,M. Ye,et al. Methanol to Olefins (MTO): From Fundamentals to Commercialization[J].ACS Catalysis, 2015, 5(3):1922-1938
[2]M.St?ckerMethanol-to-hydrocarbons: catalytic materials and their behavior[J].Microporous and Mesoporous Materials, 1999, 29(1):3-48
[3]C.D. Chang,AJ. Silvestri. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J].Journal of Catalysis, 1977, 47(2):249-259
[4]J.F. Haw,WSong,D.M. Marcus,et al. The Mechanism of Methanol to Hydrocarbon Catalysis[J].Accounts of Chemical Research, 2003, 36(5):317-326
[5]I.M. Dahl,SKolboe. On the Reaction Mechanism for Hydrocarbon Formation from Methanol over SAPO-34: I. Isotopic Labeling Studies of the Co-Reaction of Ethene and Methanol[J].Journal of Catalysis, 1994, 149(2):458-464
[6]U.Olsbye,SSvelle,M. Bj?rgen,et al. Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity[J].Angewandte Chemie International Edition, 2012, 51(24):5810-5831
[7]R.M. Dessau,RB. LaPierre. On the mechanism of methanol conversion to hydrocarbons over HZSM-5[J].Journal of Catalysis, 1982, 78(1):136-141
[8]W.Song,JF. Haw,J.B. Nicholas,et al. Methylbenzenes Are the Organic Reaction Centers for Methanol-to-Olefin Catalysis on HSAPO-34[J].Journal of the American Chemical Society, 2000, 122(43):10726-10727
[9]S.Svelle,FJoensen,J. Nerlov,et al. Conversion of Methanol into Hydrocarbons over Zeolite H-ZSM-5:? Ethene Formation Is Mechanistically Separated from the Formation of Higher Alkenes[J].Journal of the American Chemical Society, 2006, 128(46):14770-14771
[10]C.Wang,YWang,Z. Xie,et al. Methanol to Olefin Conversion on HSAPO-34 Zeolite from Periodic Density Functional Theory Calculations: A Complete Cycle of Side Chain Hydrocarbon Pool Mechanism[J].The Journal of Physical Chemistry C, 2009, 113(11):4584-4591
[11]C.Wang,YWang,H. Liu,et al. Catalytic activity and selectivity of methylbenzenes in HSAPO-34 catalyst for the methanol-to-olefins conversion from first principles[J].Journal of Catalysis, 2010, 271(2):386-391
[12]C.Wang, Y. Wang, H. Liu, et al. Theoretical insight into the minor role of paring mechanism in the methanol-to-olefins conversion within HSAPO-34 catalyst[J]. Microporous and Mesoporous Materials, 2012, 158: 264-271.[J].Microporous and Mesoporous Materials, 2012, 158(2):264-271
[13]C.Wang, Y. Wang, Z. Xie. Insights into the reaction mechanism of methanol-to-olefins conversion in HSAPO-34 from first principles: Are olefins themselves the dominating hydrocarbon pool species[J]. Journal of Catalysis, 2013, 301: 8-19.[J].Journal of Catalysis, 2013, 301(1):8-19
[14]C.Wang,YWang,Z. Xie. Verification of the dual cycle mechanism for methanol-to-olefin conversion in HSAPO-34: a methylbenzene-based cycle from DFT calculations[J].Catalysis Science & Technology, 2014, 4(8):2631-2638
[15]C.Wang,YWang,Y. Du,et al. Similarities and differences between aromatic-based and olefin-based cycles in H-SAPO-34 and H-SSZ-13 for methanol-to-olefins conversion: insights from energetic span model[J].Catalysis Science & Technology, 2015, 5(9):4354-4364
[16]C.Wang,YWang,Z. Xie. Understanding Zeolites Catalyzed Methanol-to-Olefins Conversion from Theoretical Calculations[J].Chinese Journal of Chemistry, 2018, 36(5):381-386
[17]J.Ke,WHu,Y. Du,et al. Microkinetic Simulations of Methanol-to-Olefin Conversion in H-SAPO-34: Dynamic Distribution and Evolution of the Hydrocarbon Pool and Implications for Catalytic Performance[J].ACS Catalysis, 2023, 13(13):8642-8661
[18]V.Van Speybroeck,KDe Wispelaere,J. Van der Mynsbrugge,et al. First principle chemical kinetics in zeolites: the methanol-to-olefin process as a case study[J].Chemical Society Reviews, 2014, 43(21):7326-7357
[19]C.Wang,BLi,Y. Wang,et al. Insight into the topology effect on the diffusion of ethene and propene in zeolites: A molecular dynamics simulation study[J].Journal of Energy Chemistry, 2013, 22(6):914-918
[20]G.Yang,CWang,Y. Li,et al. Simple structure descriptors quantifying the diffusion of ethene in small-pore zeolites: insights from molecular dynamic simulations[J].Inorganic Chemistry Frontiers, 2022, 9(8):1590-1602
[21]X.Liu,CWang,J. Zhou,et al. Molecular transport in zeolite catalysts: depicting an integrated picture from macroscopic to microscopic scales[J].Chemical Society Reviews, 2022, 51(19):8174-8200
[22]X.Shen,YDu,J. Ding,et al. Affecting the Formation of the Micro-structure and Mesomacro-structure of SAPO-34 zeolite by Amphipathic Molecules[J].ChemCatChem, 2020, 12(19):4904-4910
[23]J.Ding,XShen,J. Zhou,et al. Confining Pore-mouth: an Efficient Way to Increase the Selectivity to Ethylene in the MTO Reaction[J].ChemCatChem, 2020, 12(24):6420-6425
[24] 刘红星, 谢在库, 陆贤, 等.含氧化合物转化为低碳烯烃的催化剂[P]. 中国专利: CN200810043287.0, 2008-04-24.
[25]刘红星, 谢在库, 张成芳, 等.用氟化氢-三乙胺复合模板剂合成-分子筛[J].催化学报, 2003, 24(4):279-283
[26]刘红星, 谢在库, 张成芳, 等.不同模板剂合成-分子筛的表征与热分解过程研究[J].化学物理学报英文版, 2003, 16(6):521-527
[27]刘红星, 谢在库, 张成芳, 等.用-复合模板剂合成-分子筛的研究-分子筛的合成与表征[J].催化学报, 2004, 25(9):702-706
[28]刘红星, 谢在库, 张成芳, 等.硅源量和晶化时间对-分子筛结构和性能的影响[J].无机化学学报, 2003, 19(3):240-246
[29] 齐国祯, 钟思青, 张惠明, 等.甲醇或二甲醚转化制低碳烯烃的方法[P]. 中国专利: CN200710037232.4, 2007-02-07.
[30] 谢在库, 刘志成, 王传明, 等.分子筛扩散与工业催化[M]. 北京: 科学出版社, 2021. 73-90.
[31] 王仰东, 谢在库, 齐国祯, 等.反应-再生装置及其用途[P]. 中国专利: CN201710766917.6, 2017-08-31.
[32] 刘红星, 谢在库, 陆贤, 等.制备高耐磨强度分子筛流化床催化剂的方法[P]. 中国专利: CN200810128490.8, 2008-06-27. |