石油炼制与化工 ›› 2024, Vol. 55 ›› Issue (1): 42-51.
夏天1,栗振华1,2,邵明飞1,2,段雪1,2
收稿日期:
2023-09-18
修回日期:
2023-09-21
出版日期:
2024-01-12
发布日期:
2024-01-15
通讯作者:
栗振华
E-mail:LZH0307@mail.buct.edu.cn
基金资助:
Tian Xia,Zhenhua Li,Mingfei Shao,
Received:
2023-09-18
Revised:
2023-09-21
Online:
2024-01-12
Published:
2024-01-15
Contact:
Zhenhua Li
E-mail:LZH0307@mail.buct.edu.cn
摘要: 利用可再生能源(太阳能、风能)驱动的电解水制氢技术是获取“绿氢”的必经之路,是实现碳中和的重要战略措施。然而,目前电解水制氢技术仍面临电解效率低和能耗高等问题。其原因之一在于阳极析氧反应(OER)动力学过程缓慢,制约了阴极产氢,并且阳极产物氧气的附加值较低。利用电解水过程中阳极产生的“活性氧”物种催化有机物选择性氧化(替代OER),被证明是能够降低电解水反应电压、提高产氢效率的有效策略,并且利用阳极得到高附加值化学品可以进一步分摊并降低制氢成本,最近受到科研界和产业界的广泛关注。基于此,总结了近年来电解水制氢耦合有机物氧化方面的研究进展,包括:阳极表面水活化产生活性氧的种类及其催化有机氧化反应机理、反应物吸附过程强化提升反应速率相关策略、电解水制氢耦合氧化反应器设计和产物分离等技术。最后,对该领域的未来发展前景和面临的挑战进行了总结和展望。
夏天 栗振华 邵明飞 段雪. 电解水制氢耦合有机物氧化研究进展[J]. 石油炼制与化工, 2024, 55(1): 42-51.
[1] Arun Majumdar, John M. Deutch, Ravi S. Prasher, et al. A framework for a hydrogen economy[J]. Joule, 2021, 5(8): 1905-1908.[2] Steven J. Davis, Nathan S. Lewis, Matthew Shaner, et al. Net-zero emissions energy systems[J]. Science, 2018, 360(6396): 1419.[3] Samrand Saeidi, András Sápi, Asif Hussain Khoja, et al. Evolution paths from gray to turquoise hydrogen via catalytic steam methane reforming: Current challenges and future developments[J]. Renewable and Sustainable Energy Reviews, 2023, 183: 113392.[4] Rafael L. Germscheidt, Daniel E. B. Moreira, Rafael G. Yoshimura, et al. Hydrogen environmental benefits depend on the way of production: An overview of the main processes production and challenges by 2050[J]. Advanced Energy and Sustainability Research, 2021, 2(10): 2100093.[5] Xiaona Li, Chaitany Jayprakash Raorane, Changlei Xia, et al. Latest approaches on green hydrogen as a potential source of renewable energy towards sustainable energy: Spotlighting of recent innovations, challenges, and future insights[J]. Fuel, 2023, 334: 126684.[6] Dohyung Jang, Jaedong Kim, Dongmin Kim, et al. Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies[J]. Energy Conversion and Management, 2022, 258: 115499.[7] Sunghak Park, Luhao Liu, ?ayan Demirk?r, et al. Solutal Marangoni effect determines bubble dynamics during electrocatalytic hydrogen evolution[J]. Nature chemistry, 2023: 1-9.[8] Xiaozhong Zheng, Xiaoyun Shi, Honghui Ning, et al. Tailoring a local acid-like microenvironment for efficient neutral hydrogen evolution[J]. Nature Communications, 2023, 14(1): 4209.[9] Fucong Lyu, Shanshan Zeng, Zhe Jia, et al. Two-dimensional mineral hydrogel-derived single atoms-anchored heterostructures for ultrastable hydrogen evolution[J]. Nature Communications, 2022, 13(1): 6249.[10] Xiaomei Wang, Guifa Long, Bo Liu, et al. Rationally modulating the functions of Ni3Sn2‐NiSnOx nanocomposite electrocatalysts towards enhanced hydrogen evolution reaction[J]. Angewandte Chemie, 2023, 135(19): e202301562.[11] Chengyu Huang, Zhonghong Xia, Jing Wang, et al. Highly efficient and stable electrocatalyst for hydrogen evolution by molybdenum doped Ni-Co phosphide nanoneedles at high current density[J]. Nano Research, 2023: 1-9.[12] Kamran Dastafkan, Xiangjian Shen, Rosalie K. Hocking, et al. Monometallic interphasic synergy via nano-hetero-interfacing for hydrogen evolution in alkaline electrolytes[J]. Nature Communications, 2023, 14(1): 547.[13] Zhiping Lin, Zongpeng Wang, Junjie Gong, et al. Reversed spillover effect activated by Pt atom dimers boosts alkaline hydrogen evolution reaction[J]. Advanced Functional Materials, 2023: 2307510.[14] Zanyu Chen, Xiaopeng Li, Jun Zhao, et al. Stabilizing Pt single atoms through Pt–Se electron bridges on vacancy‐enriched nickel selenide for efficient electrocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition, 2023: e202308686.[15] Qin Yang, Hanxuan Liu, Pei Yuan, et al. Single carbon vacancy traps atomic platinum for hydrogen evolution catalysis[J]. Journal of the American Chemical Society, 2022, 144(5): 2171-2178.[16] Roser Fernández-Climent, Jesús Redondo, Miguel García-Tecedor, et al. Highly durable nanoporous Cu2–xS films for efficient hydrogen evolution electrocatalysis under mild pH conditions[J]. ACS catalysis, 2023, 13(15): 10457-10467.[17] Andrzej Lasia. Mechanism and kinetics of the hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2019, 44(36): 19484-19518.[18] Hainan Sun, Xiaomin Xu, Hyunseung Kim, et al. Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications[J]. Energy & Environmental Materials, 2023, 0: e12441.[19] Jinze Li, Hao Li, Wenfu Xie, et al. Flame‐assisted synthesis of O‐cordinated single‐atom catalysts for efficient electrocatalytic oxygen reduction and hydrogen evolution reaction[J]. Small Methods, 2022, 6(1): 2101324.[20] Lina Chong, Guoping Gao, Jianguo Wen, et al. La-and Mn-doped cobalt spinel oxygen evolution catalyst for proton exchange membrane electrolysis[J]. Science, 2023, 380(6645): 609-616.[21] Yuke Bai, Yu Wu, Xichen Zhou, et al. Promoting nickel oxidation state transitions in single-layer NiFeB hydroxide nanosheets for efficient oxygen evolution[J]. Nature Communications, 2022, 13(1): 6094.[22] Ling Zhang, Jiaji Wang, Ke Jiang, et al. Self‐reconstructed metal‐organic framework heterojunction for switchable oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2022, 61(51): e202214794.[23] Jian Wang, Se-Jun Kim, Jiapeng Liu, et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation[J]. Nature Catalysis, 2021, 4(3): 212-222.[24] Giukia Righi, Julius Plescher, Franz-Philipp Schmidt, et al. On the origin of multihole oxygen evolution in haematite photoanodes[J]. Nature Catalysis, 2022, 5(10): 888-899.[25] Seunghwa Lee, You-Chiuan Chu, Lichen Bai, et al. Operando identification of a side-on nickel superoxide intermediate and the mechanism of oxygen evolution on nickel oxyhydroxide[J]. Chem Catalysis, 2023, 3: 100475.[26] Rui Li, Kun Xiang, Zhikun Peng, et al. Recent advances on electrolysis for simultaneous generation of valuable chemicals at both anode and cathode[J]. Advanced Energy Materials, 2021, 11(46): 2102292.[27] Cheng. Tang, Yao. Zheng, Mietek. Jaroniec, et al. Electrocatalytic refinery for sustainable production of fuels and chemicals[J]. Angewandte Chemie International Edition, 2021, 60(36): 19572-19590.[28] Hui Luo, Jesús Barrio, Nixon Sunny, et al. Progress and perspectives in photo‐and electrochemical‐oxidation of biomass for sustainable chemicals and hydrogen production [J]. Advanced Energy Materials, 2021, 11(43): 2101180.[29] Yingjie. Song, Kaiyue. Ji, Haohong. Duan, et al. Hydrogen production coupled with water and organic oxidation based on layered double hydroxides[J]. Exploration, 2021, 1(3): 20210050.[30] Di Li, Jibing Tu, Yingying Lu, et al. Recent advances in hybrid water electrolysis for energy-saving hydrogen production[J]. Green Chemical Engineering, 2023, 4(1): 17-29.[31] Haoyu Wang, Minglei Sun, Jintao Ren, et al. Circumventing challenges: design of anodic electrocatalysts for hybrid water electrolysis systems[J]. Advanced Energy Materials, 2022, 13(4): 2203568.[32] Yifan Yan, Qiangyu Wang, Pengjie Hao, et al. Photoassisted strategy to promote glycerol electrooxidation to lactic acid coupled with hydrogen production[J]. ACS Applied Materials & Interfaces, 2023, 15(19): 23265-23275.[33] Shijin Li, Wenfu Xie, Yuke Song, et al. Integrated CoPt electrocatalyst combined with upgrading anodic reaction to boost hydrogen evolution reaction[J]. Chemical Engineering Journal, 022, 437, 135473.[34] Hua Zhou, Yue Ren, Zhenhua Li, et al. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel[J]. Nature communications, 2021, 12(1): 4679.[35] Xiaotong Han, Hongyuan Sheng, Chang Yu, et al. Electrocatalytic oxidation of glycerol to formic acid by CuCo2O4 spinel oxide nanostructure catalysts[J]. ACS Catalysis, 2020, 10(12): 6741-6752.[36] Linfeng Fan, Yaxin Ji, Genxiang Wang, et al. High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production[J]. Journal of the American Chemical Society, 2022, 144(16): 7224-7235.[37] Biao Huang, Yiyao Ge, An Zhang, et al. Seeded synthesis of hollow PdSn intermetallic nanomaterials for highly efficient electrocatalytic glycerol oxidation[J]. Advanced Materials, 2023: 2302233.[38] Yin Zhu, Qizhu Qian, Yanxu Chen, et al. Biphasic transition metal nitride electrode promotes nucleophile oxidation reaction for practicable hybrid water electrocatalysis[J]. Advanced Functional Materials, 2023: 2300547.[39] Ge Ma, Na Yang, Guofu Zhou, et al. The electrochemical reforming of glycerol at Pd nanocrystals modified ultrathin NiO nanoplates hybrids: An efficient system for glyceraldehyde and hydrogen coproduction[J]. Nano Research, 2022: 1-8.[40] Mengmeng Du, Yu Zhang, Sailei Kang, et al. Electrochemical production of glycolate fuelled by polyethylene terephthalate plastics with improved techno‐economics[J]. Small, 2023: 2303693.[41] Xue Jiang, Zemeng Dong, Qiong Zhang, et al. Decoupled hydrogen evolution from water/seawater splitting by integrating ethylene glycol oxidation on PtRh0.02@Rh nanowires with Rh atom modification[J]. Journal of Materials Chemistry A, 2022, 10(38): 20571-20579.[42] Xinwei Li, Xiaoyu You, Zhuang Yan, et al. Ag-doped Pd nano-dendritic for promoting the electrocatalytic oxidation of ethylene to ethylene glycol[J]. Materials Chemistry Frontiers, 2023, 7(7): 1437-1445.[43] Endalkachew Asefa Moges, Chia-Yu Chang, Wei-Hsiang Huang, et al. Sustainable synthesis of dual single‐atom catalyst of Pd-N4/Cu-N4 for partial oxidation of ethylene glycol[J]. Advanced Functional Materials, 2022, 32(46): 2206887.[44] Dexin Chen, Yunxuan Ding, Xing Cao, et al. Highly efficient biomass upgrading by A Ni‐Cu electrocatalyst featuring passivation of water oxidation activity[J]. Angewandte Chemie International Edition, 2023: e202309478.[45] Difei Xiao, Xiaolei Bao, Dujuan Dai, et al. Boosting the electrochemical 5‐hydroxymethylfurfural oxidation by balancing the competitive adsorption of organic and OH? over controllable reconstructed Ni3S2/NiOx[J]. Advanced Materials, 2023: 2304133.[46] Ruyi Zhong, Puwei Wu, Qi Wang, et al. Room-temperature fabrication of defective CoOxHy nanosheets with abundant oxygen vacancies and high porosity as efficient 5-hydroxymethylfurfural oxidation electrocatalysts[J]. Green Chemistry, 2023, 25(12): 4674-4684.[47] Hua Zhou, Yue Ren, Bingxin Yao, et al. Scalable electrosynthesis of commodity chemicals from biomass by suppressing non-Faradaic transformations[J]. Nature Communications, 2023, 14:5621.[48] Zhao Sun, Christopher K. Russell, Kevin J. Whitty, et al. Chemical looping-based energy transformation via lattice oxygen modulated selective oxidation[J]. Progress in Energy and Combustion Science, 2023, 96: 101045.[49] Xiaohong Xie, Lei Du, Litao Yan, et al. Oxygen evolution reaction in alkaline environment: material challenges and solutions[J]. Advanced Functional Materials, 2022, 32(21): 2110036.[50] Huabing Tao, Yinghua Xu, Xiang Huang, et al. A general method to probe oxygen evolution intermediates at operating conditions[J]. Joule, 2019, 3(6): 1498-1509.[51] Chao. Feng, Xianghua. She, Yequan. Xiao, et al. Direct detection of FeVI water oxidation intermediates in an aqueous solution[J]. Angewandte Chemie, 2023, 62(9): e202218738.[52] Chenggong Jiang, Hongbo Song, Guodong Sun, et al. Data‐driven interpretable descriptors for the structure–activity relationship of surface lattice oxygen on doped vanadium oxides[J]. Angewandte Chemie International Edition, 2022, 61(35): e202206758.[53] Ruixiang Ge, Ye Wang, Zezhou Li, et al. Selective electrooxidation of biomass‐derived alcohols to aldehydes in a neutral medium: promoted water dissociation over a nickel‐oxide‐supported ruthenium single‐atom catalyst[J]. Angewandte Chemie, 2022, 134(19): e202200211.[54] Hua Zhou, Zhenhua Li, Simin Xu, et al. Selectively upgrading lignin derivatives to carboxylates through electrochemical oxidative C(OH)-C bond cleavage by a Mn-doped cobalt oxyhydroxide catalyst[J]. Angewandte Chemie International Edition, 2021, 60(16): 8976-8982.[55] Ye Wang, Yuquan Zhu, Zhiheng Xie, et al. Efficient electrocatalytic oxidation of glycerol via promoted OH* generation over single-atom-bismuth-doped spinel Co3O4[J]. ACS Catalysis, 2022, 12(19): 12432-12443.[56] Yanyan Zhang, Jungang Wang, Xiaofei Yu, et al. Potential-dynamic surface chemistry controls the electrocatalytic processes of ethanol oxidation on gold surfaces[J]. ACS Energy Letters, 2018, 4(1): 215-221.[57] McKenna K. Goetz, Michael T. Bender, Kyoung Shin Choi. Predictive control of selective secondary alcohol oxidation of glycerol on NiOOH[J]. Nature Communications, 2022, 13(1): 5848.[58] Hao Lv, Yang Wang, Aaron Lopes, et al. Ultrathin PdAg single-crystalline nanowires enhance ethanol oxidation electrocatalysis[J]. Applied Catalysis B: Environmental, 2019, 249: 116-125.[59] Yan Li, Xinfa Wei, Lisong Chen, et al. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions[J]. Nature Communications, 2019, 10(1): 5335.[60] Yuke Song, Wenfu Xie, Yingjie Song, et al. Bifunctional integrated electrode for high-efficient hydrogen production coupled with 5-hydroxymethylfurfural oxidation[J]. Applied Catalysis B: Environmental, 2022, 312: 121400.[61] Zuyun He, Jinwoo Hwang, Zhiheng Gong, et al. Promoting biomass electrooxidation via modulating proton and oxygen anion deintercalation in hydroxide[J]. Nature Communications, 2022, 13(1): 3777.[62] Wei Chen, Chao Xie, Yanyong Wang, et al. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation[J]. Chem, 2020, 6(11): 2974-2993.[63] Kyoungsuk Jin, Joseph H. Maalouf, Nikifar Lazouski, et al. Epoxidation of cyclooctene using water as the oxygen atom source at manganese oxide electrocatalysts[J]. Journal of American Chemical Society, 2019, 141(15): 6413-6418.[64] Meysam Tayebi, Zohreh Masoumi, Ahmad Tayyebi, et al. Photoelectrochemical epoxidation of cyclohexene on an α-Fe2O3 photoanode using water as the oxygen source[J]. ACS Applied Materials & Interfaces, 2023, 15(16): 20053-20063.[65] Jamie Y. C. Chen, Lianna Dang, Hanfeng Liang, et al. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: Detection of Fe4+ by mossbauer spectroscopy[J]. Journal of the American Chemical Society, 2015, 137(48): 15090-15093.[66] Yukun Zhao, Chaoyuan Deng, Daojian Tang, et al. α-Fe2O3 as a versatile and efficient oxygen atom transfer catalyst in combination with H2O as the oxygen source[J]. Nature Catalysis, 2021, 4(8): 684-691.[67] Bhushan N. Zope, David D. Hibbitts, Matthew Neurock, et al. Reactivity of the gold/water interface during selective oxidation catalysis[J]. Science, 2010, 330(6000): 74-78.[68] Yifan Yan, Hua Zhou, Simin Xu, et al. Electrocatalytic upcycling of biomass and plastic wastes to biodegradable polymer monomers and hydrogen fuel at high current densities[J]. Journal of the American Chemical Society, 2023, 145(11): 6144-6155.[69] Zhenhua Li, Xiaofan Li, Hua Zhou, et al. Electrocatalytic synthesis of adipic acid coupled with H2 production enhanced by a ligand modification strategy[J]. Nature Communications, 2022, 13(1): 5009.[70] Mohd Nur Ikhmal Salehmin, Teuku Husaini, Jonathan Goh, et al. High-pressure PEM water electrolyser: A review on challenges and mitigation strategies towards green and low-cost hydrogen production[J]. Energy Conversion and Management, 2022, 268: 115985.[71] M. Maier, K. Smith, J. Dodwell, et al. Mass transport in PEM water electrolysers: A review[J]. International Journal of Hydrogen Energy, 2022, 47(1): 30-56.[72] Tongzhou Wang, Xuejie Cao, Lifang Jiao. PEM water electrolysis for hydrogen production: fundamentals, advances, and prospects[J]. Carbon Neutrality, 2022, 1(1): 21.[73] Eun Joo Park, Christopher G. Arges, Hui Xu, et al. Membrane strategies for water electrolysis[J]. ACS Energy Letters, 2022, 7(10): 3447-3457.[74] Hua Zhou, Yue Ren, Zhenhua Li, et al. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel[J]. Nature Communications, 2021, 12(1): 4679.[75] Zhenhua Li, Yifan Yan, Simin Xu, et al. Alcohols electrooxidation coupled with H2 production at high current densities promoted by a cooperative catalyst[J]. Nature Communications, 2022, 13(1): 147. |
[1] | 王德武 卢春喜 丁姗姗 王祝安. 提升管与流化床耦合反应器内固含率的轴向分布[J]. 石油炼制与化工, 2007, 38(11): 41-45. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||