石油炼制与化工 ›› 2024, Vol. 55 ›› Issue (2): 135-143.
李盛龙1,2,孙炜1,吴晶3,杨静静1,王佳眉1,王海涛1,邹菁1,江吉周1
收稿日期:
2023-07-17
修回日期:
2023-11-13
出版日期:
2024-02-12
发布日期:
2024-01-29
通讯作者:
江吉周
E-mail:027wit@163.com
基金资助:
Received:
2023-07-17
Revised:
2023-11-13
Online:
2024-02-12
Published:
2024-01-29
摘要: 铁酸铋具有较窄的禁带宽度、较高的化学稳定性、较好的可见光响应能力等优势,被认为是半导体光催化剂的理想材料之一。然而,铁酸铋作为光催化剂常存在载流子效率低、光生电子-空穴对复合率高等缺陷,实际应用受限。在概述铁酸铋基本性质和光催化机理的基础上,首先详细介绍了铁酸铋的常用制备方法;随后重点阐述了元素掺杂、异质结构建和形貌控制等3种铁酸铋改性策略;最后着重综述了铁酸铋在光催化领域中的应用研究进展,并对今后铁酸铋光催化剂的研究重点和方向做出了展望。
李盛龙 孙炜 吴晶 杨静静 王佳眉 王海涛 邹菁 江吉周. 纳米铁酸铋的制备、改性及光催化应用[J]. 石油炼制与化工, 2024, 55(2): 135-143.
[1] B. Dai, C. Lu, J. Kou, et al. Photocatalytic performance of PMN-PT@TiO2 highly enhanced by alternative spatial electric field induced charge separation effect [J], Journal of Alloys and Compounds. (2017) 696 988-995.[2] Z. Yu, Z. Tang, N. Zhang, et al. TiO2 nanotubes modified by CdS quantum dots and performance of photocatalytic water splitting for hydrogen[J]. Journal of Petrochemical Universities, (2022) 35 38-45. [3] Y.L. Liu, J.M. Wu, Synergistically catalytic activities of BiFeO3/TiO2 core-shell nanocomposites for degradation of organic dye molecule through piezophototronic effect [J], Nano Energy. (2019) 56 74-81.[4] J. Wu, N. Qin, D. Bao, Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration [J], Nano Energy. (2018) 45 44-51. [5] S. Mittal, S. Garg, H. Bhandari, et al. A review on recent progressions of bismuth ferrite modified morphologies as an effective photocatalyst to curb water and air pollution [J], Inorganic Chemistry Communications. (2022) 144 109834.[6] P.W. Wang, M. Guttag, C.-S. Tu, Surface modification of multiferroic BiFeO3 ceramic by argon sputtering [J], Journal of Surface Engineered Materials and Advanced Technology. (2014) 4 295-308.[7] R.G. W.J Moreau, C. Michel, Ferroelectric BiFeO3 X-ray and neutron diffraction study [J], Journal of Physics and Chemistry of Solids. (1971) 32 1315-1320.[8] J.T. Heron, D.G. Schlom, R. Ramesh, Electric field control of magnetism using BiFeO3-based heterostructures [J], Applied Physics Reviews. (2014) 1 021303. [9] N. Wang, X. Luo, L. Han, et al. Structure, Performance, and Application of BiFeO3 Nanomaterials [J], Nano-Micro Letters. (2020) 12 81. [10] H. Wang, C. Yang, J. Lu, et al. On the structure of α?BiFeO3 [J], Inorganic Chemistry. (2013) 52 2388-2392.[11] A. Sun, H. Chen, C. Song, et al. Magnetic Bi25FeO40-graphene catalyst and its high visible-light photocatalytic performance [J], RSC Advances. (2013) 3 4332-4340.[12] Y. Nie, L. Zhang, Y.Y. Li, et al. Enhanced Fenton-like degradation of refractory organic compounds by surface complex formation of LaFeO3 and H2O2 [J], Journal of Hazardous Materials. (2015) 294 195-200.[13] Y. Ren, L. Lin, J. Ma, et al. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M=Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water [J], Applied Catalysis B: Environmental. (2015) 165 572-578.[14] Y.J. X. H. Wu, J. Miao, Y. Zhao, et al. Novel multiferroic Bi2Fe4O9 nanoparticles: the interesting optical, photocatalytic, and multiferroic properties [J], Optoelectron, Advanced Materials. (2013) 7 116-120.[15] W. Da Oh, Z. Dong, Z.T. Hu, et al. A novel quasi-cubic CuFe2O4-Fe2O3 catalyst prepared at low temperature for enhanced oxidation of bisphenol A via peroxymonosulfate activation [J], Journal of Materials Chemistry A. (2015) 3 22208-22217.[16] Y. Wu, H. Luo, H. Wang, et al. Facile synthesis of magnetic Bi25FeO40 /rGO catalyst with efficient photocatalytic performance for phenolic compounds under visible light [J], RSC Advances. (2012) 5 4905-4908.[17] N.C. Stephenson, Structural studies of some body-centered cubic phases of mixed oxides involving Bi2O3: The structures of Bi25FeO40 and Bi38ZnO60 [J], Journal of Solid State Chemistry. (1975) 8 1-8.[18] L. Zhang, X. Zhang, Y. Zou, et al. Hydrothermal synthesis, influencing factors and excellent photocatalytic performance of novel nanoparticle-assembled Bi25FeO40 tetrahedrons [J], CrystEngComm. (2015) 17 6527-6537.[19] H. Jebari, N. Tahiri, M. Boujnah, et al. Theoretical investigation of electronic, magnetic and magnetocaloric properties of Bi25FeO40 compound [J], Phase Transitions. (2021) 94 147-158.[20] W. Zhao, Q. Zhang, H. Wang, et al. Enhanced catalytic performance of Ag2O/BaTiO3 heterostructure microspheres by the piezo/pyro-phototronic synergistic effect [J], Nano Energy. (2020) 73 104783.[21] S. Ameer, K. Jindal, M. Tomar, et al. Proceedings growth of highly oriented orthorhombic phase of Bi2Fe4O9 thin films by pulsed laser deposition [J], Materials Today. (2021) 47 1646-1650.[22] J. Long, T. Ren, J. Han, et al. Heterostructured BiFeO3@CdS nanofibers with enhanced piezoelectric response for efficient piezocatalytic degradation of organic pollutants [J], Separation and Purification Technology. (2022) 290 120861.[23] Y.P. Wang, L. Zhou, M.F. Zhang, et al. Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering [J], Applied Physics Letters. (2004) 84 1731-1733.[24] V.R. Palkar, R. Pinto, BiFeO3 thin films: Novel effects [J], 58 (2002) 1003-1008.[25] F. Mushtaq, X. Chen, M. Hoop, et al. Piezoelectrically enhanced photocatalysis with BiFeO3 nanostructures for efficient water remediation [J], iScience. (2018) 4 236-246.[26] M.L. Xu, M. Lu, G.Y. Qin, et al. Piezo‐photocatalytic synergy in BiFeO3@COF Z‐Scheme heterostructures for high‐efficiency overall water splitting [J], Angewandte Chemie International Edition. (2022) 61 e202210700.[27] A. Vijay, K. V. Ramanujachary, S.E. Lofland, et al. Role of crystal structure and electrical polarization of an electrocatalyst in enhancing oxygen evolution performance: Bi-Fe-O system as a case study [J], Electrochimica Acta. (2022) 407 139887.[28] Q. Zhang, W. Gong, J. Wang, et al. Size-dependent magnetic, photoabsorbing, and photocatalytic properties of single-crystalline Bi2Fe4O9 semiconductor nanocrystals [J], Journal of Physics and Chemistry C. (2011) 115377 25241-25246.[29] L. Ren, S.Y. Lu, J.Z. Fang, et al. Enhanced degradation of organic pollutants using Bi25FeO40 microcrystals as an efficient reusable heterogeneous photo-Fenton like catalyst [J], Catalysis Today. (2017) 281 656-661.[30] B. Li, C. Lai, G. Zeng, et al. Facile hydrothermal synthesis of Z-scheme Bi2Fe4O9/Bi2WO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity [J], ACS Applied Materials & Interfaces. (2018) 10 18824-18836.[31] P. Suresh, S. Srinath, A comprative study of sol-gel and solid-state prepared La3+ doped multiferroic BiFeO3 [J], Advanced Materials Letters. (2014) 5 127-130.[32] H. Zhang, T. Tong, J. Chen, et al. Synthesis and visible light photocatalytic properties of Bi2Fe4O9 particles via EDTA-assisted sol-gel route [J], Journal of Sol-Gel Science and Technology. (2015) 78 135-143.[33] Y.L. Pei, C. Zhang, Effect of ion doping in different sites on the morphology and photocatalytic activity of BiFeO3 microcrystals [J], Journal of Alloys and Compounds. (2013) 570 57-60.[34] Z. Hu, D. Chen, S. Wang, et al. Facile synthesis of Sm-doped BiFeO3 nanoparticles for enhanced visible light photocatalytic performance [J], Materials Science and Engineering B-Advanced Functional Solid-state Materials. (2017) 220 1-12.[35] Y. Tie, S.Y. Ma, S.T. Pei, et al. Pr doped BiFeO3 hollow nanofibers via electrospinning method as a formaldehyde sensor [J], Sensors and Actuators B: Chemical. (2020) 308 127689.[36] Y. Huo, Y. Jin, Y. Zhang, Citric acid assisted solvothermal synthesis of BiFeO3 microspheres with high visible-light photocatalytic activity [J], Journal of Molecular Catalysis A-Chemical. (2010) 331 15-20.[37] W. Wang, N. Li, Y. Chi, et al. Electrospinning of magnetical bismuth ferrite nanofibers with photocatalytic activity [J], Ceramics International. (2013) 39 3511-3518.[38] Y. Wang, K. Miao, W. Zhao, et al. Novel nanoparticle-assembled tetrakaidekahedron Bi25FeO40 as efficient photo-Fenton catalysts for Rhodamine B degradation [J], Advanced Powder Technology. (2022) 33 103579.[39] K.P. Remya, D. Prabhu, R.J. Joseyphus, et al. Tailoring the morphology and size of perovskite BiFeO3 nanostructures for enhanced magnetic and electrical properties [J], Materials & Design. (2020) 192 108694.[40] M. Humayun, A. Zada, Z. Li, et al. Enhanced visible-light activities of porous BiFeO3 by coupling with nanocrystalline TiO2 and mechanism [J], Applied Catalysis B: Environmental. (2016) 180 219-226.[41] Z.T. Hu, S.K. Lua, T.T. Lim, Cuboid-like Bi2Fe4O9/Ag with Graphene-wrapping tribrid composite with superior capability for environmental decontamination: nanoscaled material design and visible-light-driven multifunctional catalyst [J], ACS Sustainable Chemistry & Engineering. (2015) 3 2726-2736.[42] J.P. Zou, L.C. Wang, J. Luo, et al. Synthesis and efficient visible light photocatalytic H2 evolution of a metal-free g-C3N4/graphene quantum dots hybrid photocatalyst [J], Applied Catalysis B: Environmental. (2016) 193 103-109.[43] L. Xie, S. Liu, Y. Sun, et al. Research progress of graphite phase carbon nitride photocatalysts[J]. Journal of Petrochemical Universities, (2021) 34 27-34.[44] H. Hua, F. Feng, M. Du, et al. 0D-2D Z-Scheme photocatalyst Cd0.5Zn0.5S@Bi2Fe4O9 for effective hydrogen evolution from water [J], Applied Surface Science. (2021) 541 148428.[45] F. Li, J. Zhou, C. Gao, et al. A green method to prepare magnetically recyclable Bi/Bi25FeO40-C nanocomposites for photocatalytic hydrogen generation [J], Applied Surface Science. (2020) 521 146342.[46] A. Zhang, Z. Liu, B. Xie, et al. Environmental efficient phase boundary catalyst [J], Applied Catalysis B:? Environmental. (2020) 279 2-13.[47] S. Tu, Y. Guo, Y. Zhang, et al. Piezocatalysis and piezo-photocatalysis: catalysts classification and modification strategy, reaction mechanism, and practical application [J], Advanced Functional Materials. (2020) 30 2005158.[48] T. Soltani, A. Tayyebi, B. Lee, BiFeO3/BiVO4 p-n heterojunction for efficient and stable photocatalytic and photoelectrochemical water splitting under visible-light irradiation [J], Catalysis Today. (2020) 340 188-196.[49] Z. Liu, Y. Tan, X. Ruan, et al. Spark plasma sintering-assisted synthesis of Bi2Fe4O9/Bi25FeO40 heterostructures with enhanced photocatalytic activity for removal of antibiotics [J], International Journal of Molecular Sciences. (2022) 23 12652.[50] K. Villa, S. Murcia-López, T. Andreu, et al. On the role of WO3 surface hydroxyl groups for the photocatalytic partial oxidation of methane to methanol [J], Catalysis Communications. (2015) 58 200-203.[51] S. Wu, X. Tan, J. Lei, et al. Ga-doped and Pt-loaded porous TiO2-SiO2 for photocatalytic nonoxidative coupling of methane [J], Journal of the American Chemical Society. (2019) 141 6592-6600.[52] J.A. de Oliveira, J.C. da Cruz, O.R. Nascimento, et al. Selective CH4 reform to methanol through partial oxidation over Bi2O3 at room temperature and pressure [J], Applied Catalysis B: Environmental. (2022) 318 121827.[53] S. Murcia-López, K. Villa, T. Andreu, et al. Partial oxidation of methane to methanol using bismuth-based photocatalysts [J], ACS Catalysis. (2014) 4 3013-3019.[54] K. Zheng, Y. Wu, J. Zhu, et al. Room-temperature photooxidation of CH4 to CH3OH with nearly 100% selectivity over hetero-ZnO/Fe2O3 porous nanosheets [J], Journal of the American Chemical Society. (2022) 144 12357-12366.[55] J. Liu, C. Han, X. Yang, et al. Methyl formate synthesis from methanol on titania supported copper catalyst under UV irradiation at ambient condition: Performance and mechanism [J], Journal of Catalysis. (2016) 333 162-170.[56] L. Meng, Z. Chen, Z. Ma, et al. Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces [J], Energy Environment Science. (2018) 11 294-298.[57] Y. Xing, Z. Yao, W. Li, et al. Fe/Fe3C boosts H2O2 utilization for methane conversion overwhelming O2 generation [J], Angewandte Chemie International Edition. (2021) 133 8971-8977. [58] J. Yang, J. Hao, J. Wei, et al. Visible-light-driven selective oxidation of methane to methanol on amorphous FeOOH coupled m-WO3 [J], Fuel. (2020) 266 117104. |
[1] | 鲍俊 曾双亲 杨清河 聂红 曾晓飞 桑小义 侯冉冉. 无定形硅铝材料的制备及应用研究进展[J]. 石油炼制与化工, 2024, 55(3): 154-161. |
[2] | 代巧玲 孙佳新 贾燕子 胡大为. 二氧化硅包覆核壳结构催化剂的制备与应用研究进展[J]. 石油炼制与化工, 2024, 55(3): 148-153. |
[3] | 郑伟平 朱忠朋 陶志平 赵杰 伏朝林 闫瑞. 高密度笼状烃五环[5.3.0.02,5.03,9.04,8]十烷的制备及应用研究[J]. 石油炼制与化工, 2023, 54(7): 71-75. |
[4] | 郭振莲 牟庆平 李新 王文静 王小燕 董松祥 王兴之. CdS/CeO2异质结纳米光催化剂催化还原CO2的研究[J]. 石油炼制与化工, 2023, 54(6): 46-54. |
[5] | 孙恩呈 赵金刚 王艺璇 纪国洋 刘芳 赵朝成. TCN-TiO2/Zn(CH3COO)2-ACF复合材料吸附耦合光催化降解烷烃类VOCs性能研究[J]. 石油炼制与化工, 2023, 54(4): 114-124. |
[6] | 郭振莲 李新 王文静 王小燕 董松祥 王兴之 牟庆平. Cu2O/MnCo2O4异质结纳米光催化剂还原CO2的研究[J]. 石油炼制与化工, 2023, 54(10): 85-91. |
[7] | 郭传奎 贾燕子 杨清河 户安鹏 赵新强 胡大为. 双峰孔材料的制备及其在催化反应中的应用研究进展[J]. 石油炼制与化工, 2023, 54(10): 30-38. |
[8] | 程彬彬 刘植昌 陈春茂 杨大鹏. 气升式环流反应器光催化处理难降解有机污染物试验研究[J]. 石油炼制与化工, 2022, 53(11): 102-109. |
[9] | 王若瑜 陈阳阳 谭集穗 任黎明 宋海涛 林伟. Z型异质结光催化还原CO2研究进展[J]. 石油炼制与化工, 2021, 52(10): 54-61. |
[10] | 孙博 吴限 张金生 李丽华. 微波法制备银镁共掺氧化锌复合光催化剂及其光催化性能研究[J]. 石油炼制与化工, 2020, 51(6): 47-51. |
[11] | 赵彬 夏维 丁国航 彭鑫梅. 水解法制备二氧化钛光催化剂的工艺研究[J]. 石油炼制与化工, 2020, 51(6): 52-56. |
[12] | 韩娜 苏炜 陈政利 沈健 王雷. BiVO4/SBA-15光催化氧化苯乙烯制苯甲醛[J]. 石油炼制与化工, 2019, 50(7): 13-18. |
[13] | 张璐璐 詹金友 孙尧 沈健. WO3-TiO2/SBA-15的光催化氧化柴油脱硫性能[J]. 石油炼制与化工, 2016, 47(6): 78-83. |
[14] | 徐亚荣 王磊 沈本贤 蔡海军. 催化裂化汽油纤维膜氧化萃取-光催化氧化组合工艺超深度脱硫的研究[J]. 石油炼制与化工, 2009, 40(11): 12-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||