[1] Jiang Xiao, Nie Xiaowa, Guo Xinwen, et al. Recent Advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120 (15): 7984-8034.
[2] Liu Yanting, Deng Dehui, Bao Xinhe. Catalysis for selected C1 chemistry[J]. Chem, 2020, 6 (10): 2497-2514.
[3] Wang Wei, Wang Shengping, Ma Xinbin, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40 (7): 3369-4260.
[4] Zhou Wei, Cheng Kang, Kang Jincan, et al. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48 (12): 3193-3228.
[5] Kattel S, Liu Ping, Chen Jingguang. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface[J]. Journal of the American Chemical Society, 2017, 139 (29): 9739-9754.
[6] Ye Runping, Ding Jie, Gong Weibo, et al. CO2 hydrogenation to high-value products via heterogeneous catalysis[J]. Nature Communications, 2019, 10 (1): 5689.
[7] Kattel S, J. Ramírez P, Chen Jingguang, et al. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J]. Science, 2017, 355(6331): 1296-1299.
[8] Behrens M, Studt F, Kasatkin I, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science, 2012, 336(6083): 893-897.
[9] Pinheiro A, Mondelli C, Agrachev M, et al. Flame-made ternary Pd-In2O3-ZrO2 catalyst with enhanced oxygen vacancy generation for CO2 hydrogenation to methanol[J]. Nature Communications, 2022, 13 (1): 5610.
[10] Wang Yuhao, Kattel S, Gao Wengui, et al. Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol[J]. Nature Communications, 2019, 10 (1): 1166.
[11] Araújo T, Morales V, Giannakakis G, et al. Reaction-induced metal-metal oxide interactions in Pd-In2O3/ZrO2 catalysts drive selective and stable CO2 hydrogenation to methanol[J]. Angewandte Chemie International Edition, 2023, e202306563.
[12] Okabe K, Yamada H, Hanaoka T, et al. CO2 hydrogenation to alcohols over highly dispersed Co/SiO2 catalysts derived from acetate[J]. Chemistry Letters, 2001, 30(9): 904-905.
[13] Fan Ting, Liu Hanlin, Shao Shengxian, et al. Cobalt catalysts enable selective hydrogenation of CO2 toward diverse products: Recent progress and perspective[J]. The Journal of Physical Chemistry Letters, 2021, 12 (43): 10486-10496.
[14] Have Iris C, Kromwijk J, Monai M, et al. Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation[J]. Nature Communications, 2022, 13(1): 324.
[15] Wang Mingrui, Zhang Guanghui, Zhu Jie, et al. Unraveling the tunable selectivity on cobalt oxide and metallic cobalt sites for CO2 hydrogenation[J]. Chemical Engineering Journal, 2022, 446(3): 137217.
[16] Dong Cui, Mu Rentao, Li Rongtan, et al. Disentangling local interfacial confinement and remote spillover effects in oxide-oxide interactions[J]. Journal of the American Chemical Society, 2023, 145 (31): 17056-17065.
[17] Karim W, Spreafico C, Kleibert A, et al. Catalyst support effects on hydrogen spillover[J]. Nature, 2017, 541 (7635): 68-71.
[18] Beaumont S, Alayoglu S, Specht C, et al. Combining in situ nexafs spectroscopy and CO2 methanation kinetics to study Pt and Co nanoparticle catalysts reveals key insights into the role of platinum in promoted cobalt catalysis[J]. Journal of the American Chemical Society, 2014, 136 (28): 9898-9901.
[19] Kattel S, Yan Binhang, Chen Jingguang, et al. CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: Importance of synergy between Pt and oxide support[J]. Journal of Catalysis, 2016, 343: 115-126.
[20] Kattel S, Yu Weiting, Yang Xiaofang, et al. CO2 hydrogenation over oxide-supported PtCo catalysts: The role of the oxide support in determining the product selectivity[J]. Angewandte Chemie International Edition, 2016, 55 (28): 7968-7973.
[21] Bai Shuxing, Shao Qi, Feng Yonggang, et al. Highly efficient carbon dioxide hydrogenation to methanol catalyzed by zigzag platinum-cobalt nanowires[J]. Small, 2017, 13 (22): 1604311.
[22] Ouyang Bi, Xiong Shuhao, Zhang Yuhua, et al. The study of morphology effect of Pt/Co3O4 catalysts for higher alcohol synthesis from CO2 hydrogenation[J]. Applied Catalysis A: General, 2017, 543: 189-195.
[23] Liu Bing, Ouyang Bi, Zhang Yuhua, et al. Effects of mesoporous structure and Pt promoter on the activity of Co-based catalysts in low-temperature CO2 hydrogenation for higher alcohol synthesis[J]. Journal of Catalysis, 2018, 366: 91-97.
[24] 刘新月, 吕帅, 张煜华, 等. 一维ZnO表面可控构建Co3Mn1纳米晶及其催化CO氧化性能[J]. 无机化学学报, 2023, 39(5): 83-858.
[25] Hu Jiye, Fan Yiqiu, Pei Yan, et al. Shape effect of ZnO crystals as Co catalyst in combined reforming-hydrogenolysis of glycerol[J]. ACS Catalysis, 2013, 3 (10): 2280-2287. |