石油炼制与化工 ›› 2024, Vol. 55 ›› Issue (2): 36-42.
吴一鹏1,段绘州1,任朝秀2,侯春生3,吴韬1
收稿日期:
2023-10-16
修回日期:
2023-11-03
出版日期:
2024-02-12
发布日期:
2024-01-29
通讯作者:
吴韬
E-mail:wutao@bipt.edu.cn
基金资助:
Received:
2023-10-16
Revised:
2023-11-03
Online:
2024-02-12
Published:
2024-01-29
Supported by:
摘要: 分子筛由于具有大量可调变的酸性位点以及良好的择形性和水热稳定性等优点而被广泛应用于石油化工领域的酸催化反应。分子筛骨架铝原子的位置决定了其酸位点的分布,因而骨架铝原子的分布(包括所处的空腔体积、化学环境以及两个铝原子的距离)对其酸催化性能(反应路径及反应速率)影响很大。由于分子筛的合成涉及一个复杂晶化的过程,影响骨架铝原子分布的因素众多,如起始物料的种类和浓度、晶化条件、杂原子以及后处理方法等,科研人员对骨架铝原子调控方法展开了大量的研究。基于此,综述了相关研究成果,以期推动实现以功能为导向的特定铝原子分布分子筛的定向合成。
吴一鹏 段绘州 任朝秀 侯春生 吴韬. 分子筛骨架铝原子分布研究进展[J]. 石油炼制与化工, 2024, 55(2): 36-42.
[1] 颜曦明,王宝宇,黄贵秋,等. 改性Beta/Al2O3无水环境催化合成聚甲氧基二甲醚 [J]. 石油学报(石油加工), 2020, 36(05): 951-958.[2] 张梦婷, 颜婷婷, 戴卫理, 等. 分子筛稳定的孤立Mo物种催化氧化脱硫研究 [J]. 化学学报, 2020, 78(12): 1404-1410.[3] Yang Miao, Fan Dong, Wei Yingxu, et al. Recent progress in methanol-to-olefins (MTO) catalysts [J]. Advanced Materials, 2019, 31(50): 1902181.[4] Bukowski B. In the zeolite zone [J]. Nature Catalysis, 2023, 6(3): 222-223.[5] Wei Lisha, Yang Hui, Ren Pengju, et al. Distribution of multiple Al substitution in HY zeolite and Br?nsted acid strength - A periodic DFT study [J]. Microporous and Mesoporous Materials, 2022, 344: 112184.[6] Yuan Enhui, Li Meng, Zhou Jiafeng, et al. Ultrafast crystallization of mesoporous Sn-MFI single crystals achieved by addition of the cationic polyelectrolyte in starting gels [J]. Microporous and Mesoporous Materials, 2022, 337: 111922.[7] Pinar A., Rzepka P, Knorpp A., et al. Pinpointing and Quantifying the Aluminum Distribution in Zeolite Catalysts Using Anomalous Scattering at the Al Absorption Edge [J]. Journal of the American Chemical Society, 2021, 143(43): 17926-17930.[8] Muraoka K, Chaikittisilp W, Okubo T. Energy analysis of aluminosilicate zeolites with comprehensive ranges of framework topologies, chemical compositions, and aluminum distributions [J]. Journal of the American Chemical Society, 2016, 138(19): 6184-6193.[9] Hong Sungil, Mallette A, Neeway J., et al. Understanding formation thermodynamics of structurally diverse zeolite oligomers with first principles calculations [J]. Dalton Transactions, 2023, 52(5): 1301-1315.[10] Moliner M, Boronat M. Towards “enzyme-like” zeolite designs to maximize the efficiency of catalysts by molecular recognition: Fine-tuning confinement and active site location [J]. Microporous and Mesoporous Materials, 2023, 358: 112354.[11] Sawada M, Matsumoto T, Osuga R, et al. Surfactant-Assisted Direct Crystallization of CON-Type Zeolites with Particle Size and Acid-Site Location Controlled [J]. Industrial & Engineering Chemistry Research, 2022, 61(4): 1733-1747.[12] Liu Chang, Su Junjie, Liu Su, et al. Insights into the key factor of zeolite morphology on the selective conversion of syngas to light aromatics over a Cr2O3/ZSM-5 catalyst [J]. ACS Catalysis, 2020, 10(24): 15227-15237.[13] Wang Wennian, Zhang Wei, Chen Yunlei, et al. Mild-acid-assisted thermal or hydrothermal dealumination of zeolite beta, its regulation to Al distribution and catalytic cracking performance to hydrocarbons [J]. Journal of Catalysis, 2018, 362: 94-105.[14] Yang Miao, Li Bing, Gao Mingbin, et al. High propylene selectivity in methanol conversion over a small-pore SAPO molecular sieve with ultra-small cage [J]. ACS Catalysis, 2020, 10(6): 3741-3749.[15] 白宇恩,张彬瑞,刘东阳,等, ZSM-5分子筛酸性能和孔结构的协同作用对C5催化裂解性能的影响[J].化工学报,2023,74(1):438-448.[16] Sazama P, Tabor E, Klein P, et al. Al-rich Beta zeolites. Distribution of Al atoms in the framework and related protonic and metal-ion species [J]. Journal of Catalysis, 2016, 333: 102-114.[17] Děde?ek J, Tabor E, and Sklenak S. Tuning the aluminum distribution in zeolites to increase their performance in acid-catalyzed reactions [J]. ChemSusChem, 2019, 12(3): 556-576.[18] Song Chenhai, Chu Yueying, Wang Meng, et al. Cooperativity of adjacent Br?nsted acid sites in MFI zeolite channel leads to enhanced polarization and cracking of alkanes [J]. Journal of Catalysis, 2017, 349: 163-174.[19] Xiao Peipei, Wang Yong, Lu Yao, et al. Effects of Al distribution in the Cu-exchanged AEI zeolites on the reaction performance of continuous direct conversion of methane to methanol [J]. Applied Catalysis B: Environmental, 2023, 325: 122395.[20] Nakamura K, Xiao Peipei, Osuga R, et al. Impacts of framework Al distribution and acidic properties of Cu-exchanged CHA-type zeolite on catalytic conversion of methane into methanol followed by lower hydrocarbons [J]. Catalysis Science & Technology, 2023, 13(9): 2648-2651.[21] Wang Yilin, Liu Xinhui, He Xuan, et al. Tailoring the framework aluminum arrangement in ZSM-5 zeolite to regulate reaction route for alkylation of benzene with methanol [J]. Microporous and Mesoporous Materials, 2023, 351: 112491.[22] Guo Rong, Hou Zhufeng, Chen Jianshan, et al. Improved catalytic performance of Pd-Cu/NaY zeolite by tunning Al distribution for the synthesis of dimethyl carbonate [J]. Fuel, 2022, 330: 125484.[23] Li Shikun, Zhao Zhenchao, Zhao Rongrong, et al. Aluminum location and acid strength in an aluminum-rich Beta zeolite catalyst: a combined density functional theory and solid-state NMR study [J]. ChemCatChem, 2017, 9(8): 1494-1502.[24] Hoffman A., Bates J., Di I., et al. Rigid arrangements of ionic charge in zeolite frameworks conferred by specific aluminum distributions preferentially stabilize alkanol dehydration transition states [J]. Angewandte Chemie International Edition, 2020, 59(42): 18686-18694.[25] Ghorbanpour A, Rimer J., and Grabow L. Computational assessment of the dominant factors governing the mechanism of methanol dehydration over H-ZSM-5 with heterogeneous aluminum distribution [J]. ACS Catalysis, 2016, 6(4): 2287-2298.[26] Yi Fengjiao, Xu Dan, Tao Zhichao, et al. Correlation of Br?nsted acid sites and Al distribution in ZSM-5 zeolites and their effects on butenes conversion [J]. Fuel, 2022, 320: 123729.[27] Wang Sen, Wang Pengfei, Qin Zhangfeng, et al. Relation of catalytic performance to the aluminum siting of acidic zeolites in the conversion of methanol to olefins, viewed via a comparison between ZSM-5 and ZSM-11 [J]. ACS Catalysis, 2018, 8(6): 5485-5505.[28] Lee S, Nimlos C, Kipp E, et al. Evolution of Framework Al Arrangements in CHA Zeolites during Crystallization in the Presence of Organic and Inorganic Structure-Directing Agents [J]. Crystal Growth & Design, 2022, 22(10): 6275-6295.[29] Liang Tingyu, Chen Jialing, Qin Zhangfeng, et al. Conversion of methanol to olefins over H-ZSM-5 zeolite: reaction pathway is related to the framework aluminum siting [J]. ACS Catalysis, 2016, 6(11): 7311-7325.[30] Bernauer M., Tabor E., Pashkova V., et al. Proton proximity – New key parameter controlling adsorption, desorption and activity in propene oligomerization over H-ZSM-5 zeolites [J]. Journal of Catalysis, 2016, 344: 157-172.[31] Kim S, Park G, Woo M, et al. Control of hierarchical structure and framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on methanol conversion [J]. ACS Catalysis, 2019, 9(4): 2880-2892.[32] Kang Bin, Li Ming, Di Zhaoying, et al. Role of Al pairs on effective N2O decomposition over the ZSM-5 zeolite catalyst [J]. Catalysis Today, 2022, 402: 17-26.[33] Chen Zhen, Wang Lingjuan, Rao Richuan, et al. An investigation on the effect of cross-linking state of silicon species on the distribution of framework Al atoms in ZSM-5 zeolite and its catalytic performance for MTO reaction [J]. Applied Catalysis A: General, 2023, 665: 119356.[34] Oishi K, Muraoka K, and Nakayama A. Analysis of Al site-directing ability of organic structure-directing agents in FER and CHA zeolites: a computational exploration of energetic preferences [J]. Chemical Communications, 2023, 59(58): 8953-8956.[35] Yokoi T, Mochizuki H, Namba S, et al. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties [J]. The Journal of Physical Chemistry C, 2015, 119(27): 15303-15315.[36] Berkson Z., Hsieh M, Smeets Sf, et al. Preferential siting of aluminum heteroatoms in the zeolite catalyst Al-SSZ-70 [J]. Angewandte Chemie International Edition, 2019, 58(19): 6255-6259.[37] Tang Xiaomin, Chen Wei, Dong Wenjun, et al. Framework aluminum distribution in ZSM-5 zeolite directed by organic structure-directing agents: a theoretical investigation [J]. Catalysis Today, 2022, 405-406: 101-110.[38] Ren Shu, Yang Fan, Tian Chao, et al. Selective Alkylation of Benzene with Methanol to Toluene and Xylene over H-ZSM-5 Zeolites: Impact of Framework Al Spatial Distribution. Catalysis Letters, 2023. 13: 1295.[39] Bello E, Ferri P, Nero M, et al. NH3-SCR catalysts for heavy-duty diesel vehicles: Preparation of CHA-type zeolites with low-cost templates [J]. Applied Catalysis B: Environmental, 2022, 303: 120928.[40] Guo Yanxia, Wang Sen, Geng Rui, et al. Enhancement of the dimethyl ether carbonylation activation via regulating acid sites distribution in FER zeolite framework [J]. iScience, 2023, 26(10): 107748.[41] Yokoi T, Mochizuki H, Biligetu T, et al. Unique Al distribution in the MFI framework and its impact on catalytic properties [J]. Chemistry Letters, 2017, 46(6): 798-800.[42] Wang Sen, Zhang Li, Li Shiying, et al. Tuning the siting of aluminum in ZSM-11 zeolite and regulating its catalytic performance in the conversion of methanol to olefins [J]. Journal of Catalysis, 2019, 377: 81-97.[43] Di I., Li Sichi, Jones C., et al. Cooperative and competitive occlusion of organic and inorganic structure-directing agents within Chabazite zeolites influences their aluminum arrangement [J]. Journal of the American Chemical Society, 2020, 142(10): 4807-4819.[44] Yuan Kai, Jia Xiangyu, Wang Sen, et al. Regulating the distribution of acid sites in ZSM-11 zeolite with different halogen anions to enhance its catalytic performance in the conversion of methanol to olefins [J]. Microporous and Mesoporous Materials, 2022, 341: 112051.[45] Liu Ze, Li Siqi, Li Li, et al.One-step high efficiency crystallization of zeolite A from ultra-fine circulating fluidized bed fly ash by hydrothermal synthesis method [J]. Fuel, 2019, 257: 116043.[46] Sungtak K, Gyungah P, Min H, et al. Control of Hierarchical Structure and Framework-Al Distribution of ZSM-5 via Adjusting Crystallization Temperature and Their Effects on Methanol Conversion [J]. ACS Catalysis, 2019, 9 (4):2880-2892.[47] Mlekodaj K, Dedecek J, Pashkova V, et al. Al Organization in the SSZ-13 Zeolite. Al Distribution and Extraframework Sites of Divalent Cations [J]. The Journal of Physical Chemistry C, 2019, 123 (13): 7968-7987.[48] Li Chengeng, Vidal M, Miguel P., et al. Selective introduction of acid sites in different confined positions in ZSM-5 and its catalytic implications [J]. ACS Catalysis, 2018, 8(8): 7688-7697.[49] Biligetu T, Wang Yong, Nishitoba T, et al. Al distribution and catalytic performance of ZSM-5 zeolites synthesized with various alcohols [J]. Journal of Catalysis, 2017, 353: 1-10.[50] Chen Kang, Wu Xueqiu, Zhao Jiyu, et al. Organic-free modulation of the framework Al distribution in ZSM-5 zeolite by magnesium participated synthesis and its impact on the catalytic cracking reaction of alkanes [J]. Journal of Catalysis, 2022, 413: 735-750.[51] Xiong Guang, Yang Huaxiang, Liu Liping, et al. Post-synthesis of Sn-beta zeolite by aerosol method [J]. RSC Advances, 2023, 13(7): 4835-4842.[52] Holzinger J, Beato P, Lundegaard L, et al. Distribution of aluminum over the tetrahedral sites in ZSM-5 zeolites and their evolution after steam treatment [J]. The Journal of Physical Chemistry C, 2018, 122(27): 15595-15613.[53] Silaghi M, Chizallet C, Sauer J, et al. Dealumination mechanisms of zeolites and extra-framework aluminum confinement [J]. Journal of Catalysis, 2016, 339: 242-255.[54] Silaghi M, Chizallet C, Petracovschi E, et al. Regioselectivity of Al–O bond hydrolysis during zeolites dealumination unified by Br?nsted–Evans–Polanyi relationship [J]. ACS Catalysis, 2015, 5(1): 11-15.[55] Liao Yingling, Meng Xuan, Shi Li, et al. NH4F modified β zeolite for aniline condensation to diphenylamine and its catalytic mechanism [J]. Catalysis Communications, 2023, 175: 106624.[56] Kots P., Doika P., Vance B., et al. Tuning High-Density Polyethylene Hydrocracking through Mordenite Zeolite Crystal Engineering [J]. ACS Sustainable Chemistry & Engineering, 2023, 11(24): 9000-9009.[57] Zou Qiuxia, He Hongshen, Xie Jie, et al. Study on the mechanism of acid modified H-Beta zeolite acidic sites on the catalytic pyrolysis of Kraft lignin [J]. Chemical Engineering Journal, 2023, 462: 142029.[58] Feng Xiaobo, Cao Jingpei, Su Chang, et al. Tailoring the acid distribution and identifying the active center of rod-shaped HSUZ-4 zeolite for enhancing dimethyl ether carbonylation performance [J]. Fuel, 2022, 315: 123267.[59] Altundal O., Leon S, and Sastre G. Different Zeolite Phases Obtained with the Same Organic Structure Directing Agent in the Presence and Absence of Aluminum: The Directing Role of Aluminum in the Synthesis of Zeolites [J]. The Journal of Physical Chemistry C, 2023, 127(22): 10797-10805.[60] Cui Yongkang, Xing Yi, Tian Jinglei, et al. Insights into the adsorption performance and separation mechanisms for CO2 and CO on NaX and CaA zeolites by experiments and simulation [J]. Fuel, 2023, 337: 127179. |
[1] | 樊金龙 朱学栋 徐亚荣 杨帆. Pd/FER分子筛模板剂脱除及其催化正丁烯骨架异构化反应性能[J]. 石油炼制与化工, 2024, 55(3): 9-20. |
[2] | 吴岩 董鹏 王颖 岳源源. 分子筛合成母液回用技术研究进展[J]. 石油炼制与化工, 2024, 55(2): 110-114. |
[3] | 付文华 赵胜利 张铁柱 王振东 杨为民. 纳米LEV分子筛的简易合成[J]. 石油炼制与化工, 2024, 55(1): 152-157. |
[4] | 刘红星 丁佳佳 申学峰 王传明 齐国祯 王仰东 谢在库. 从基础研究到工业转化应用的实践—甲醇制烯烃SMTO催化技术开发[J]. 石油炼制与化工, 2024, 55(1): 122-129. |
[5] | 夏长久 于佳元 林民 朱斌 彭欣欣 舒兴田. 中国石化双氧水法制环氧丙烷工业开发及关键科技问题[J]. 石油炼制与化工, 2024, 55(1): 130-134. |
[6] | 夏长久 杨焯 林民 朱斌 彭欣欣 汪燮卿 舒兴田. 空心钛硅分子筛催化材料:从理性设计到工业应用[J]. 石油炼制与化工, 2024, 55(1): 18-27. |
[7] | 李凤岭 周微 孙志国 王嘉辰 杨晓宇. 加氢裂化尾油在不同结构催化剂上催化裂解制烯烃研究[J]. 石油炼制与化工, 2023, 54(9): 84-92. |
[8] | 王翀 鲁家荣 闫昊 刘熠斌 陈小博. NaX分子筛吸附天然气中酸性气的分子模拟[J]. 石油炼制与化工, 2023, 54(9): 41-50. |
[9] | 李雪礼 侯硕旻 段宏昌 路瑞玲 张琰图. 磷改性工艺对ZSM-5分子筛催化裂化增产丙烯性能的影响[J]. 石油炼制与化工, 2023, 54(8): 74-82. |
[10] | 杜金涛 赵保槐 曾壮 苑志伟 曾双亲 鲍俊. 微波技术在分子筛材料合成及应用中的研究进展[J]. 石油炼制与化工, 2023, 54(8): 127-133. |
[11] | 富添 洪新 孙潇镝 王聚财 唐克. AgY分子筛的制备及其吸附脱除模拟燃料中吡啶的性能[J]. 石油炼制与化工, 2023, 54(6): 39-45. |
[12] | 张永汾 李金芝 刘洪全 于中伟 周勇. 可控b轴长度的MFI纳米分子筛膜的原位定向构筑及其在正/异丁烷分离上的应用[J]. 石油炼制与化工, 2023, 54(6): 55-63. |
[13] | 张孔远 马亮 张唯稚 黄仁强 崔孟达. 工业C8+芳烃馏分脱烯烃催化剂失活原因分析[J]. 石油炼制与化工, 2023, 54(5): 42-47. |
[14] | 李鑫鑫 吴玉超 张昊天 金颖 张瑞锐 刘瑞霞. CeX分子筛催化分子氧选择性氧化环己烷[J]. 石油炼制与化工, 2023, 54(5): 48-56. |
[15] | 王永超 严加松 李蕊 王若瑜. 四氢萘催化裂化反应行为及生焦研究[J]. 石油炼制与化工, 2023, 54(3): 75-81. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||