[1] Li Y, Chen T, Zhao S, et al. Engineering cobalt oxide with coexisting cobalt defects and oxygen vacancies for enhanced catalytic oxidation of toluene[J]. ACS Catalysis, 2022, 12(9):4906-4917.[2] Zhu Y, Li C, Liang C, et al. Regulating CeO2 morphologies on the catalytic oxidation of toluene at lower temperature: A study of the structure–activity relationship[J]. Journal of Catalysis, 2023, 418:151-162.[3] 孙恩呈, 赵金刚, 王艺璇, et al. TCN-TiO2/Zn(CH3COO)2-ACF复合材料吸附耦合光催化降解烷烃类VOCs性能研究[J]. 石油炼制与化工, 2023, 54(04):114-124.[4] Liu W, Xiang W, Chen X, et al. A novel strategy to adjust the oxygen vacancy of CuO/MnO2 catalysts toward the catalytic oxidation of toluene[J]. Fuel, 2022, 312:122975.[5] 张君, 李蕊, 陈奇, et al. 生物质焦的制备及VOCs吸附性能研究[J]. 石油炼制与化工, 2022, 53(06):128-131.[6] Li X, Wang Y, He J, et al. Combination of porous covalent triazine frameworks with spinel for highly improved photothermal catalytic oxidation of toluene[J]. Applied Catalysis B: Environmental, 2023, 331:122690.[7] 葛亚粉, 孙宇, 肖鹏, et al. 分子筛去除VOCs的研究进展[J]. 化工进展:1-19.[8] 王科菊, 赵成, 胡晓玫, et al. 金属氧化物低温催化氧化VOCs的研究进展[J]. 化工进展, 2023, 42(05):2402-2412.[9] Hamid H H A, Latif M T, Nadzir M S M, et al. Ambient BTEX levels over urban, suburban and rural areas in Malaysia[J]. Air Quality, Atmosphere & Health, 2019, 12:341-351.[10] Ye N, Zheng J, Xie K, et al. Performance of mesoporous CeO2-Cr2O3 mixed metal oxides applied to benzene catalytic combustion[J]. Journal of Rare Earths, 2023, 41(6):889-895.[11] Chen X, Cai S, Yu E, et al. MnOx/Cr2O3 composites prepared by pyrolysis of Cr-MOF precursors containing in situ assembly of MnOx as high stable catalyst for toluene oxidation[J]. Applied Surface Science, 2019, 475:312-324.[12] Wang Y, Xie S, Deng J, et al. Morphologically controlled synthesis of porous spherical and cubic LaMnO3 with high activity for the catalytic removal of toluene[J]. ACS applied materials & interfaces, 2014, 6(20):17394-17401.[13] Bai B, Li J, Hao J. 1D-MnO2, 2D-MnO2 and 3D-MnO2 for low-temperature oxidation of ethanol[J]. Applied Catalysis B: Environmental, 2015, 164:241-250.[14] Sun Y, Zhang X, Li N, et al. Surface properties enhanced MnxAlO oxide catalysts derived from MnxAl layered double hydroxides for acetone catalytic oxidation at low temperature[J]. Applied Catalysis B: Environmental, 2019, 251:295-304.[15] Morales M R, Barbero B P, Cadus L E. Evaluation and characterization of Mn-Cu mixed oxide catalysts for ethanol total oxidation: influence of copper content[J]. Fuel, 2008, 87(7):1177-1186.[16] Chen Z, Yang Q, Li H, et al. Cr-MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature[J]. Journal of Catalysis, 2010, 276(1):56-65.[17] 李安明, 卫广程, 郝乔慧, et al. Mn 含量对 CeO2-ZrO2-MnOx 催化剂甲苯氧化净化性能的影响[J]. 燃料化学学报, 2020, 48(2):231-239.[18] Wang Y, Xue Y, Zhao C, et al. Catalytic combustion of toluene with La0. 8Ce0. 2MnO3 supported on CeO2 with different morphologies[J]. Chemical Engineering Journal, 2016, 300:300-305.[19] Varkolu M, Velpula V, Ganji S, et al. Ni nanoparticles supported on mesoporous silica (2D, 3D) architectures: highly efficient catalysts for the hydrocyclization of biomass-derived levulinic acid[J]. RSC advances, 2015, 5(70):57201-57210.[20] Mohamed E F, Awad G, Andriantsiferana C, et al. Biofiltration technology for the removal of toluene from polluted air using Streptomyces griseus[J]. Environmental technology, 2016, 37(10):1197-1207.[21] Delimaris D, Ioannides T. VOC oxidation over MnOx–CeO2 catalysts prepared by a combustion method[J]. Applied Catalysis B: Environmental, 2008, 84(1-2):303-312. |