石油炼制与化工 ›› 2024, Vol. 55 ›› Issue (7): 152-162.
郭旭,何鑫,徐润,夏国富
收稿日期:
2023-12-06
修回日期:
2024-02-20
出版日期:
2024-07-12
发布日期:
2024-06-28
通讯作者:
夏国富
E-mail:xiaguofu.ripp@sinopec.com
Received:
2023-12-06
Revised:
2024-02-20
Online:
2024-07-12
Published:
2024-06-28
摘要: 二氧化碳(CO2)的N-甲酰化反应是CO2在还原剂的作用下,与有机胺类化合物反应生成N-甲酰胺类化合物的反应。CO2的N-甲酰化反应既能够实现CO2的资源化利用,有助于减少温室气体排放,同时能够将廉价的CO2转化为高附加值的有机化学品,如N, N-二甲基甲酰胺和N-甲酰吗啉等,拓展CO2下游转化利用的反应网络。对近年来CO2的N-甲酰化反应的催化剂体系、催化机理和反应工艺等方面进行综述,阐述该反应研究过程中所面临的问题,并展望其未来发展方向。
郭旭 何鑫 徐润 夏国富. CO2的N-甲酰化反应研究进展[J]. 石油炼制与化工, 2024, 55(7): 152-162.
[1]Zhang L, Zhao Z J, Wang T, et al.Nano-designed semiconductors for electro-and photoelectro-catalytic conversion of carbon dioxide[J].Chemical Society Reviews, 2018, 47(14):5423-5443[2]Ding M, Flaig R W, Jiang H L, et al.Carbon capture and conversion using metal–organic frameworks and MOF-based materials[J].Chemical Society Reviews, 2019, 48(10):2783-2828[3]Ye R P, Ding J, Gong W, et al.CO2 hydrogenation to high-value products via heterogeneous catalysis[J].Nature Communications, 2019, 10(1):5698-5713[4]Liu Q, Wu L, Jackstell R, et al.Using carbon dioxide as a building block in organic synthesis[J].Nature Communications, 2015, 6(1):5933-5948[5]Jacquet O, Das Neves Gomes C, Ephritikhine M, et al.Recycling of Carbon and Silicon Wastes: Room Temperature Formylation of N–H Bonds Using Carbon Dioxide and Polymethylhydrosiloxane[J].Journal of the American Chemical Society, 2012, 134(6):2934-2937[6]Liu X, Li X, He L.Transition Metal‐Catalyzed Reductive Functionalization of CO2[J].European Journal of Organic Chemistry, 2019, 2019(14):2437-2447[7]Farlow M W, Adkins H.The Hydrogenation of Carbon Dioxide and a Correction of the Reported Synthesis of Urethans[J].Journal of the American Chemical Society, 1935, 57(11):2222-2223[8]Haynes P, Slaugh L H, Kohnle J F.Formamides from carbon dioxide,amines and hydrogen in the presence of metal complexes[J].Tetrahedron Letters, 1970, 11(5):365-368[9]Jessop P G, Hsiao Y, Ikariya T, et al.Catalytic Production of Dimethylformamide from Supercritical Carbon Dioxide[J].Journal of the American Chemical Society, 1994, 116(19):8851-8852[10]Kr?cher O, K?ppel R A, et al.Highly active ruthenium complexes with bidentate phosphine ligands for the solvent-free catalytic synthesis of N, N-dimethylformamide and methyl formate[J].Chemical Communications, 1997, 5(1):453-454[11]Zhang L, Han Z, Zhao X, et al.Highly Efficient Ruthenium-Catalyzed N-Formylation of Amines with H2 and CO2[J].Angewandte Chemie, 2015, 127(21):6284-6287[12]Fang J, Wang Z Q, Wei X, et al.N-Formylation of Amines with Carbon Dioxide and Hydrogen Catalyzed by Ionic Liquid-Assisted Ru Complexes[J].ACS Sustainable Chemistry & Engineering, 2021, 9(39):13256-13267[13]Federsel C, Boddien A, Jackstell R, et al.A Well-Defined Iron Catalyst for the Reduction of Bicarbonates and Carbon Dioxide to Formates,Alkyl Formates,and Formamides[J].Angewandte Chemie International Edition, 2010, 49(50):9777-9780[14]Daw P, Chakraborty S, Leitus G, et al.Selective N-Formylation of Amines with H2 and CO2 Catalyzed by Cobalt Pincer Complexes[J].ACS Catalysis, 2017, 7(4):2500-2504[15]Affan M A, Jessop P G.Catalytic Formylation of Primary and Secondary Amines with CO2 and H2 Using Abundant-Metal Catalysts[J].Inorganic Chemistry, 2017, 56(12):7301-7305[16]Affan M A, Schatte G, Jessop P G.Formylation of Amines by CO2 Hydrogenation Using Preformed Co(II)Nickel(II) Complexes[J].Inorganic Chemistry, 2020, 59(19):14275-14279[17]Kr?cher O, K?ppel R A, Fr?ba M, et al.Sol-gel derived hybrid materials as heterogeneous catalysts for the synthesis of N, N-dimethylformamide from supercritical carbon dioxide[J].Chemical Communications, 1996, 13(1):1497-1498[18]Kr?cher O, K?ppel R A, Fr?ba M, et al.Silica Hybrid Gel Catalysts Containing Group(VIII) Transition Metal Complexes: Preparation,Structural,and Catalytic Properties in the Synthesis of N,N-Dimethylformamide and Methyl Formate from Supercritical Carbon Dioxide[J].Journal of Catalysis, 1998, 178(1):284-298[19]Schmid L, Baiker A.Highly efficient synthesis of N, N-Dialkylformamides from carbon dioxide and dialkylamines over ruthenium-silica hybrid gels[M]//Studies in Surface Science and Catalysis. Elsevier, 2000, 130: 557-562.[20]Kr?cher O, K?ppel R A, Baiker A.Silica hybrid gel catalysts containing ruthenium complexes: influence of reaction parameters on the catalytic behaviour in the synthesis of N,N-dimethylformamide from carbon dioxide[J].Journal of Molecular Catalysis A: Chemical, 1999, 140(2):185-193[21]Kayaki Y, Shimokawatoko Y, Ikariya T.Amphiphilic Resin-Supported Ruthenium(II) Complexes as Recyclable Catalysts for the Hydrogenation of Supercritical Carbon Dioxide[J].Advanced Synthesis & Catalysis, 2003, 345(12):175-179[22]Kumar S, Kumar P, Deb A, et al.Graphene oxide grafted with iridium complex as a superior heterogeneous catalyst for chemical fixation of carbon dioxide to dimethylformamide[J].Carbon, 2016, 100(1):632-640[23]Zhang Y, Wang J, Zhu H, et al.N-Formylation of Amines with CO2 and H2 by Using NHC-Iridium Coordination Assemblies as Solid Molecular Catalysts[J].Chemistry-An Asian Journal, 2018, 13(20):3018-3021[24]Shen Y, Zheng Q, Chen Z, et al.Highly Efficient and Selective N‐Formylation of Amines with CO2 and H2 Catalyzed by Porous Organometallic Polymers[J].Angewandte Chemie International Edition, 2021, 60(8):4125-4132[25]Liu J, Guo C, Zhang Z, et al.Synthesis of dimethylformamide from CO2,H2 and dimethylamine over CuZnO[J].Chemical Communications, 2010, 46(31):5770-5772[26]Cui X, Zhang Y, Deng Y, et al.Amine formylation via carbon dioxide recycling catalyzed by a simple and efficient heterogeneous palladium catalyst[J].Chem. Commun., 2014, 50(2):189-191[27]Zhang Y, Wang H, Yuan H, et al.Hydroxyl Group-Regulated Active Nano-PdC Catalyst Generation via in Situ Reduction of Pd(NH3)xClyC for N-Formylation of Amines with CO2H2[J].ACS Sustainable Chemistry & Engineering, 2017, 5(7):5758-5765[28]Dai X, Wang B, Wang A, et al.Amine formylation with CO2 and H2 catalyzed by heterogeneous PdPAL catalyst[J].Chinese Journal of Catalysis, 2019, 40(8):1141-1146[29]Luo X, Zhang H, Ke Z, et al.N-doped carbon supported Pd catalysts for N-formylation of amines with CO2H2[J].Science China Chemistry, 2018, 61(6):725-731[30]Wang Y, Chen B, Liu S, et al.Methanol Promoted Palladium‐Catalyzed Amine Formylation with CO2 and H2 by the Formation of HCOOCH3[J].ChemCatChem, 2018, 10(22):5124-5127[31]Ju P, Chen J, Chen A, et al.N -Formylation of Amines with CO2 and H2 Using Pd–Au Bimetallic Catalysts Supported on Polyaniline-Functionalized Carbon Nanotubes[J].ACS Sustainable Chemistry & Engineering, 2017, 5(3):2516-2528[32]Zou Q, Chen J, Wang Y, et al.Synthesis of Mesoporous PdxCu1–xAl2O3-y Bimetallic Catalysts Via Mechanochemistry for Selective N-Formylation of Amines with CO2 and H2[J].ACS Sustainable Chemistry & Engineering, 2021, 9(48):16153-16162[33]Frogneux X, Jacquet O, Cantat T.Iron-catalyzed hydrosilylation of CO2: CO2 conversion to formamides and methylamines[J].Catalysis Science & Technology, 2014, 4(6):1529-1533[34]Luo R, Lin X, Chen Y, et al.Cooperative Catalytic Activation of Si?H Bonds: CO2-Based Synthesis of Formamides from Amines and Hydrosilanes under Mild Conditions[J].ChemSusChem, 2017, 10(6):1224-1232[35]Luo R, Lin X, Lu J, et al.Zinc phthalocyanine as an efficient catalyst for halogen-free synthesis of formamides from amines via carbon dioxide hydrosilylation under mild conditions[J].Chinese Journal of Catalysis, 2017, 38(8):1382-1389[36]Liu X F, Ma R, Qiao C, et al.Fluoride-Catalyzed Methylation of Amines by Reductive Functionalization of CO2 with Hydrosilanes[J].Chemistry-A European Journal, 2016, 22(46):16489-16493[37]Hao L, Zhang H, Luo X, et al.Reductive formylation of amines with CO2 using sodium borohydride: A catalyst-free route[J].Journal of CO2 Utilization, 2017, 22(1):208-211[38]Fang C, Lu C, Liu M, et al.Selective Formylation and Methylation of Amines using Carbon Dioxide and Hydrosilane Catalyzed by Alkali-Metal Carbonates[J].ACS Catalysis, 2016, 6(11):7876-7881[39]Nale D, Bhanage B.An Efficient Protocol for Formylation of Amines Using Carbon Dioxide and PMHS under Transition-Metal-Free Conditions[J].Synlett, 2016, 27(09):1413-1417[40]Saptal V B, Sasaki T, Bhanage B M.Ru@PsIL-Catalyzed Synthesis of N-Formamides and Benzimidazole by using Carbon Dioxide and Dimethylamine Borane[J].ChemCatChem, 2018, 10(12):2593-2600[41]Ghosh S, Ghosh A, Biswas S, et al.Palladium Grafted Functionalized Nanomaterial: An Efficient Catalyst for the CO2 Fixation of Amines and Production of Organic Carbamates[J].ChemistrySelect, 2019, 4(13):3961-3972[42]Gajengi, Aravind, Rath, et al.Amine modified mesoporous Al2O3@MCM-41: an efficient,synergetic and recyclable catalyst for the formylation of amines using carbon dioxide and DMAB under mild reaction conditions[J].Catalysis science & technology, 2016, 6(13):4872-4881[43]Kuhlmann R, Prüllage A, Künnemann K, et al.Process development of the continuously operated synthesis of N, N- dimethylformamide based on carbon dioxide[J].Journal of CO2 Utilization, 2017, 22(1):184-190[44]Kuhlmann R, Künnemann K U, Hinderink L, et al.CO2 Based Synthesis of Various Formamides in Miniplant Scale: A Two-Step Process Design[J].ACS Sustainable Chemistry & Engineering, 2019, 7(5):4924-4931[45]丁云杰, 王国庆, 严丽, 等.一种有机胺和CO2多相催化制甲酰胺的方法[P]. 中国专利: CN112892604A[P]. 2022-09-20.[46]上海有机化学研究所.资源化利用CO2合成DMF千吨级中试项目取得进展[J].高科技与产业化, 2019, 11(1):78-78[47]丁奎岭, 张磊, 韩召斌, 等.一种制备甲酰胺类化合物的方法[P]. 中国专利: CN105985254A[P]. 2018-03-16. |
[1] | 刘鹏 李文松 郭豹 刘继东 吕建华. 负载型Pd催化剂催化草酸二甲酯脱羰基制备碳酸二甲酯[J]. 石油炼制与化工, 2024, 55(8): 74-83. |
[2] | 刘文明 唐津莲 袁起民 张锐 陈学峰. 加氢直馏柴油的催化裂化工艺研究[J]. 石油炼制与化工, 2024, 55(8): 26-31. |
[3] | 岳晋宇 高瑛俊 明皓 任龙龙 关银燕 刘诗月. 低温等离子体耦合催化剂处理恶臭气体的效果[J]. 石油炼制与化工, 2024, 55(8): 145-150. |
[4] | 李团乐 刘玉峰 张峻凡 王俊明 薛卫国 安文杰 吕会英. 噻二唑衍生物的制备及性能评价[J]. 石油炼制与化工, 2024, 55(7): 119-124. |
[5] | 张桧然 梁战桥. 乙苯转化型C8芳烃异构化催化剂RIC-300的工业试验[J]. 石油炼制与化工, 2024, 55(7): 77-80. |
[6] | 杨清河 毕云飞 黄卫国 韩嘉宝 李洪辉 王鲁强. 高选择性润滑油异构脱蜡催化剂RIW-30的研究与开发[J]. 石油炼制与化工, 2024, 55(7): 48-53. |
[7] | 王涛 臧高山 苗成林 高江 陈小萌. 石脑油固定床催化重整催化剂SR-2000的研发及首次工业应用试验[J]. 石油炼制与化工, 2024, 55(7): 54-61. |
[8] | 唐津莲 梁家林 龚剑洪 袁起民. 加氢改质页岩油催化裂化工艺研究[J]. 石油炼制与化工, 2024, 55(7): 8-14. |
[9] | 赖作通. 催化裂化柴油加氢转化技术的工业应用[J]. 石油炼制与化工, 2024, 55(7): 42-47. |
[10] | 李慧胜 徐景东 艾子龙 陈伟敏 徐人威. 分子筛含量对多产乙烯原料型柴油加氢改质催化剂性能的影响[J]. 石油炼制与化工, 2024, 55(6): 92-98. |
[11] | 韩莹莹 王宁 徐瑞年 陈标华. 响应面模型用于Beta分子筛催化剂蜂窝状整体式成型的研究[J]. 石油炼制与化工, 2024, 55(6): 83-91. |
[12] | 方宇童 闫瑞 贾丹丹 赵杰 陶志平. Ni@SiO2合成方法对催化剂结构及其双环戊二烯加氢性能的影响[J]. 石油炼制与化工, 2024, 55(6): 44-51. |
[13] | 李明哲 周勇 杨彦鹏 王子健 王涛 聂骥 赖婷婷 谢莉 王杰广. 单一酸密闭消解-电感耦合等离子体法测定催化剂中Pt、Pd含量[J]. 石油炼制与化工, 2024, 55(6): 164-171. |
[14] | 刘天意 黄卫国 邢闯 伞晓广. 分子筛改性铜硅催化剂对顺酐选择性加氢反应性能的影响[J]. 石油炼制与化工, 2024, 55(5): 58-66. |
[15] | 董松涛 李猛 王锦业 梁家林 胡志海 吴昊. 费-托合成油加氢裂化催化剂RCF-1的开发与工业应用[J]. 石油炼制与化工, 2024, 55(5): 38-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||