石油炼制与化工 ›› 2024, Vol. 55 ›› Issue (7): 163-169.
徐睿,程涛,杨雪,荣峻峰
收稿日期:
2023-12-25
修回日期:
2024-03-07
出版日期:
2024-07-12
发布日期:
2024-06-28
通讯作者:
荣峻峰
E-mail:rongjf.ripp@sinopec.com
基金资助:
Received:
2023-12-25
Revised:
2024-03-07
Online:
2024-07-12
Published:
2024-06-28
摘要: 钒基储氢合金具有储氢密度高、储放氢反应条件温和、储氢动力学性能优越、抗粉化性能好等优点,是一种优良的储氢材料。但是钒基储氢合金存在放氢平台压低、可逆储氢量低、储放氢滞后现象明显、循环稳定性差、原料价格高、金属成本高等缺点,制约着钒基储氢合金进一步推广应用。迄今为止,研究者们从元素组成和晶相结构等多种途径对其进行改性,以优化钒基储氢材料性能。基于此,以降低氢化物的放氢平台压和提高材料可逆储氢量为出发点,简述了掺杂Ti,Cr,Mn,Zr等化学元素和对于储氢合金进行特定条件优化改善的研究进展,着重阐述了元素置换、材料热处理和合金活化预处理对钒基储氢合金储氢性能的影响,展望了钒基储氢合金未来发展前景。
徐睿 程涛 杨雪 荣峻峰. 钒基储氢合金的特点和应用前景[J]. 石油炼制与化工, 2024, 55(7): 163-169.
参考文献 [1] Ye G, Xu X L, Chen Y, et al. Towards Green Economics and Society: Exploring the Efficiency of New Energy Generation[J]. Math Probl Eng, 2021, 2021:9950687. [2] Li L, Luo L, Chen L, et al. Nanoscale microstructures and hydrogenation properties of an as-cast vanadium-based medium-entropy alloy[J]. Int J Hydrogen Energy, 2023, 48(75):29230-29239. [3] Gmira S, Kobbane A, Ben-Othman J, et al. A New Energy Efficiency/Spectrum Efficiency Model for Cooperative Cognitive Radio Network[J]. Mobile Networks and Applications, 2018, 23(5):1436-1448. [4] 李星国等编著. 氢与氢能[M].北京: 机械工业出版社, 2012. [5] Züttel A. Materials for hydrogen storage[J]. Mater Today (Kidlington), 2003, 6(9):24-33. [6] Yukawa H, Teshima A, Yamashita D, et al. Alloying effects on the hydriding properties of vanadium at low hydrogen pressures[J]. J Alloys Compd, 2002, 337(1):264-268. [7] 裴沛, 张沛龙, 张蓓, et al. V系储氢合金及其合金化[J]. 材料导报, 2006, (10):123-127. [8] Kumar S, Jain A, Ichikawa T, et al. Development of vanadium based hydrogen storage material: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 72:791-800. [9] Kumar S, Tiwari G P, Krishnamurthy N. Tailoring the hydrogen desorption thermodynamics of V2H by alloying additives[J]. J Alloys Compd, 2015, 645:S252-S256.[10] Singh A, Maiya M P, Srinivasa Murthy S. Experiments on solid state hydrogen storage device with a finned tube heat exchanger[J]. Int J Hydrogen Energy, 2017, 42(22):15226-15235.[11] Busqué R, Torres R, Grau J, et al. Effect of metal hydride properties in hydrogen absorption through 2D-axisymmetric modeling and experimental testing in storage canisters[J]. Int J Hydrogen Energy, 2017, 42(30):19114-19125.[12] Afzal M, Mane R, Sharma P. Heat transfer techniques in metal hydride hydrogen storage: A review[J]. Int J Hydrogen Energy, 2017, 42(52):30661-30682.[13] Song X P, Pei P, Zhang P L, et al. The influence of alloy elements on the hydrogen storage properties in vanadium-based solid solution alloys[J]. J Alloys Compd, 2008, 455(1):392-397.[14] Yukawa H, Takagi M, Teshima A, et al. Alloying effects on the stability of vanadium hydrides[J]. J Alloys Compd, 2002, 330-332:105-109.[15] Suwarno S, Solberg J K, M?hlen J P, et al. Non-isothermal kinetics and in situ SR XRD studies of hydrogen desorption from dihydrides of binary Ti–V alloys[J]. Int J Hydrogen Energy, 2013, 38(34):14704-14714.[16] Hagi T, Sato Y, Yasuda M, et al. Structure and Phase Diagram of Ti–V–H System at Room Temperature[J]. Transactions of the Japan Institute of Metals, 1987, 28(3):198-204.[17] Tamura T, Kazumi T, Kamegawa A, et al. Effects of Protide Structures on Hysteresis in Ti-Cr-V Protium Absorption Alloys[J]. Mater Trans, 2002, 43(11):2753-2756.[18] Yan Y, Chen Y, Zhou X, et al. Some factors influencing the hydrogen storage properties of 30V–Ti–Cr–Fe alloys[J]. J Alloys Compd, 2008, 453(1):428-432.[19] Yan Y, Chen Y, Liang H, et al. Hydrogen storage properties of V30–Ti–Cr–Fe alloys[J]. J Alloys Compd, 2007, 427(1):110-114.[20] Nomura K, Akiba E. H2 Absorbing-desorbing characterization of the TiVFe alloy system[J]. J Alloys Compd, 1995, 231(1):513-517.[21] 杭州明. Ti-V-Fe系储氢合金的微观结构及储氢性能研究[D]. 杭州: 浙江大学, 2010.[22] Cho S, Enoki H, Akiba E. Effect of Fe addition on hydrogen storage characteristics of Ti0.16Zr0.05Cr0.22V0.57 alloy[J]. J Alloys Compd, 2000, 307(1):304-310.[23] Nakamura Y, Nakamura J, Sakaki K, et al. Hydrogenation properties of Ti–V–Mn alloys with a BCC structure containing high and low oxygen concentrations[J]. J Alloys Compd, 2011, 509(5):1841-1847.[24] Mouri T, Iba H. Hydrogen-absorbing alloys with a large capacity for a new energy carrier[J]. Materials Science and Engineering: A, 2002, 329-331:346-350.[25] Basak S, Shashikala K, Kulshreshtha S K. Hydrogen absorption characteristics of Zr substituted Ti0.85VFe0.15 alloy[J]. Int J Hydrogen Energy, 2008, 33(1):350-355.[26] Cho S, Han C, Park C, et al. Hydrogen storage characteristics of Ti–Zr–Cr–V alloys[J]. J Alloys Compd, 1999, 289(1):244-250.[27] Yan Y, Chen Y, Liang H, et al. The effect of Si on V30Ti35Cr25Fe10 BCC hydrogen storage alloy[J]. J Alloys Compd, 2007, 441(1):297-300.[28] Yan Y, Chen Y, Liang H, et al. Effect of Al on hydrogen storage properties of V30Ti35Cr25Fe10 alloy[J]. J Alloys Compd, 2006, 426(1):253-255.[29] Jeng R, Lee S, Hsu C, et al. Effects of the addition of Pd on the hydrogen absorption–desorption characteristics of Ti33V33Cr34 alloys[J]. J Alloys Compd, 2008, 464(1):467-471.[30] Huang L J, Lin H J, Wang H, et al. Amorphous alloys for hydrogen storage[J]. J Alloys Compd, 2023, 941:168945.[31] Sakaki K, Kim H, Asano K, et al. Hydrogen storage properties of Nb-based solid solution alloys with a BCC structure[J]. J Alloys Compd, 2020, 820:153399.[32] Aranda V, Leiva D R, Huot J, et al. Hydrogen storage properties of the TiVFeZr multicomponent alloy with C14-type laves phase structure[J]. Intermetallics (Barking), 2023, 162:108020.[33] Wang M, Wang Y, Kong H, et al. Development of Fe-containing BCC Hydrogen Storage Alloys with High Vanadium Concentration[J]. J Alloys Compd, 2023:170294.[34] Okada M, Kuriiwa T, Kamegawa A, et al. Role of intermetallics in hydrogen storage materials[J]. Materials Science and Engineering: A, 2002, 329-331:305-312.[35] Tamura T, Kazumi T, Kamegawa A, et al. Protium absorption properties and protide formations of Ti–Cr–V alloys[J]. J Alloys Compd, 2003, 356-357:505-509.[36] Rong M, Wang F, Wang J, et al. Effect of heat treatment on hydrogen storage properties and thermal stability of V68Ti20Cr12 alloy[J]. Progress in Natural Science: Materials International, 2017, 27(5):543-549.[37] SUWARNO S, SOLBERG J K, MAEHLEN J P, et al. Microstructure and hydrogen storage properties of as-cast and rapidly solidified Ti-rich Ti–V alloys[J]. Trans Nonferrous Met Soc China, 2012, 22(8):1831-1838.[38] Nakamura Y, Akiba E. New hydride phase with a deformed FCC structure in the Ti–V–Mn solid solution–hydrogen system[J]. J Alloys Compd, 2000, 311(2):317-321.[39] Yu X, Wu Z, Li F, et al. Body-centered-cubic phase hydrogen storage alloy with improved capacity and fast activation[J]. Appl Phys Lett, 2004, 84(16):3199-3201.[40] Song J, Wang J, Hu X, et al. Activation and Disproportionation of Zr2Fe Alloy as Hydrogen Storage Material[M]. 2019:1542[41] Balcerzak M. Structure and hydrogen storage properties of mechanically alloyed Ti-V alloys[J]. Int J Hydrogen Energy, 2017, 42(37):23698-23707.[42] Singh B K, Shim G, Cho S. Effects of mechanical milling on hydrogen storage properties of Ti0.32Cr0.43V0.25 alloy[J]. Int J Hydrogen Energy, 2007, 32(18):4961-4965.[43] Reilly J J, Wiswall R H. Higher hydrides of vanadium and niobium[J]. Inorg Chem, 1970, 9(7):1678-1682.[44] Kagawa A, Ono E, Kusakabe T, et al. Absorption of hydrogen by vanadium-rich VTi-based alloys[J]. Journal of the Less Common Metals, 1991, 172-174:64-70.[45] Ono S, Nomura K, Ikeda Y. The reaction of hydrogen with alloys of vanadium and titanium[J]. Journal of the Less Common Metals, 1980, 72(2):159-165.[46] Lynch J F, Reilly J J, Millot F. The absorption of hydrogen by binary vanadium-chromium alloys[J]. J Phys Chem Solids, 1978, 39(8):883-890.[47] Seo C, Kim J, Lee P S, et al. Hydrogen storage properties of vanadium-based b.c.c. solid solution metal hydrides[J]. J Alloys Compd, 2003, 348(1):252-257.[48] Tsukahara M. Hydrogenation Properties of Vanadium-Based Alloys with Large Hydrogen Storage Capacity[J]. Mater Trans, 2011, 52(1):68-72.[49] Aoki M, Noritake T, Ito A, et al. Improvement of cyclic durability of Ti–Cr–V alloy by Fe substitution[J]. Int J Hydrogen Energy, 2011, 36(19):12329-12332.[50] Towata S, Noritake T, Itoh A, et al. Effect of partial niobium and iron substitution on short-term cycle durability of hydrogen storage Ti–Cr–V alloys[J]. Int J Hydrogen Energy, 2013, 38(7):3024-3029.[51] Abdul J M, Chown L H. Influence of Fe on hydrogen storage properties of V-rich ternary alloys[J]. Int J Hydrogen Energy, 2016, 41(4):2781-2787.[52] Taxak M, Kumar S, Kalekar B B, et al. Effect of nickel addition on the solubility of hydrogen in tantalum[J]. Int J Hydrogen Energy, 2013, 38(18):7561-7568.[53] Khrussanova M, Peshev P, Darriet B, et al. Hydrogen absorption by alloys of vanadium and some 3d-transition metals[J]. Mater Res Bull, 1992, 27(5):611-616.[54] Massicot B, Latroche M, Joubert J M. Hydrogenation properties of Fe–Ti–V bcc alloys[J]. J Alloys Compd, 2011, 509(2):372-379.[55] Kuriiwa T, Tamura T, Amemiya T, et al. New V-based alloys with high protium absorption and desorption capacity[J]. J Alloys Compd, 1999, 293-295:433-436.[56] Challet S, Latroche M, Heurtaux F. Hydrogenation properties and crystal structure of the single BCC (Ti0.355V0.645)100?xMx alloys with M=Mn, Fe, Co, Ni (x=7, 14 and 21)[J]. J Alloys Compd, 2007, 439(1):294-301.[57] Fuda T, Matsumoto K, Tominaga Y, et al. Effects of Additions of BCC Former Elements on Protium Absorbing Properties of Cr–Ti–V Alloys[J]. Materials Transactions, JIM, 2000, 41(5):577-580.[58] Hang Z, Xiao X, Li S, et al. Influence of heat treatment on the microstructure and hydrogen storage properties of Ti10V77Cr6Fe6Zr alloy[J]. J Alloys Compd, 2012, 529:128-133.[59] Young K, Ouchi T, Nei J, et al. Annealing effects on Laves phase-related body-centered-cubic solid solution metal hydride alloys[J]. J Alloys Compd, 2016, 654:216-225.[60] Mu?oz C A P, Dewage H H, Yufit V, et al. A Unit Cell Model of a Regenerative Hydrogen-Vanadium Fuel Cell[J]. J Electrochem Soc, 2017, 164(14):F1717.[61] Yufit V, Hale B, Matian M, et al. Development of a Regenerative Hydrogen-Vanadium Fuel Cell for Energy Storage Applications[J]. J Electrochem Soc, 2013, 160(6):A856.[62] Goshome K, Endo N, Tetsuhiko M. Evaluation of a BCC alloy as metal hydride compressor via 100 MPa-class high-pressure hydrogen apparatus[J]. Int J Hydrogen Energy, 2019, 44(21):10800-10807.[63] Pickering L, Reed D, Bevan A I, et al. Ti–V–Mn based metal hydrides for hydrogen compression applications[J]. J Alloys Compd, 2015, 645:S400-S403.[64] Cao Z, Zhou P, Xiao X, et al. Investigation on Ti–Zr–Cr–Fe–V based alloys for metal hydride hydrogen compressor at moderate working temperatures[J]. Int J Hydrogen Energy, 2021, 46(41):21580-21589.[65] Li C, Douglas Way J, Fuerst T F, et al. Low temperature hydrogen superpermeation in vanadium composite metal foil pumps[J]. Nucl Mater Energy, 2023, 37:101529.[66] Tang S, Li L, Yan H, et al. Hydrogen trapping in vanadium carbide alloyed with transition metals[J]. Nucl Mater Energy, 2023, 36:101504.[67] Fasolin S, Barison S, Boldrini S, et al. Hydrogen separation by thin vanadium-based multi-layered membranes[J]. Int J Hydrogen Energy, 2018, 43(6):3235-3243. |
[1] | 朱若璇 刘睿莹 谢婧 陈香香 王志远 曹振. Co0.6Ni0.4/NC催化剂的制备及其催化氨硼烷水解制氢性能研究[J]. 石油炼制与化工, 2024, 55(7): 69-76. |
[2] | 孙佳丽 郑君宁 花俊峰 邱小魁 许立信 叶明富 万超. 双模板剂合成Co2P纳米片及其催化氨硼烷水解性能的研究[J]. 石油炼制与化工, 2024, 55(2): 186-192. |
[3] | 李世刚 李冰 刘晓晖 郭勇 王艳芹. 氨分解催化剂研究进展[J]. 石油炼制与化工, 2024, 55(2): 10-22. |
[4] | 刘世达 侯栓弟. 抗水性天然气汽车尾气催化氧化催化剂研发[J]. 石油炼制与化工, 2023, 54(1): 44-51. |
[5] | 季洪海 凌凤香 张会成 王少军. 柱状碳酸铝铵团簇的合成及相变研究[J]. 石油炼制与化工, 2020, 51(2): 62-70. |
[6] | 毋肖卓 涂椿滟 张乾 凌丽霞 黄伟. 热处理方式对NiMoAl催化剂结构及加氢脱氮性能的影响[J]. 石油炼制与化工, 2020, 51(11): 53-58. |
[7] | 龚旭 王宗贤 刘贺. 稠油多环芳烃对CO水热变换新生氢富存作用的研究[J]. 石油炼制与化工, 2018, 49(1): 60-64. |
[8] | 张轩 杨清河 胡大为. 载体水热处理时间对催化剂性质及加氢降残炭活性的影响[J]. 石油炼制与化工, 2015, 46(7): 58-62. |
[9] | 杨在峰 龙化云 王祥生 郭新闻. Ga改性HZSM-5催化剂芳构化性能的考察[J]. 石油炼制与化工, 2012, 43(2): 65-70. |
[10] | 曹占国1 ,刘民1 ,王祥生2 ,郭新闻2 . 水热处理温度对纳米CoMo/HZSM-5催化剂选择加氢脱硫性能的影响[J]. 石油炼制与化工, 2011, 42(12): 27-32. |
[11] | 李广慈 赵会吉 赵瑞玉 刘晨光. 不同扩孔方法对催化剂载体氧化铝孔结构的影响[J]. 石油炼制与化工, 2010, 41(1): 49-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||