[1]周隆昌, 刘汉林,李秀萍,等.直接煅烧法制备二氧化钛及其氧化脱硫性能[J].辽宁石油化工大学学报, 2021, 41(5):17-21[2]Nejad N F, Beigi A A M.Efficient desulfurization of gasoline fuel using ionic liquid extraction as a complementary process to adsorptive desulfurization[J].Petroleum Science, 2015, 12(2):330-339[3]Li H, Zhu W, Lu J, et al.Deep oxidative desulfurization of fuels catalyzed by pristine simple tungstic acid[J].Reaction Kinetics and Catalysis Letters, 2009, 96(1):165-173[4]Zhao R, Li X, Su J, et al.Preparation of WO3/g-C3N4 composites and their application in oxidative desulfurization[J]. Applied Surface Science, 2017, 392: 810-816.[J].Applied Surface Science, 2017, 392(1):810-816[5]Zhao R, Wang J, Zhang D, et al.Biomimetic oxidative desulfurization of fuel oil in ionic liquids catalyzed by Fe (III) porphyrins[J]. Applied Catalysis A: General, 2017, 532: 26-31.[J].Applied Catalysis A, 2017, 532(1):26-31[6]Zhao R, Wang J, Zhang D, et al.Deep catalytic oxidative desulfurization of model fuel based on modified iron porphyrins in ionic liquids: anionic ligand effect[J].ACS Sustainable Chemistry & Engineering, 2017, 5(3):2050-2055[7]Liu Y, Bai J, Song Y, et al.Oxygen Vacancy Engineering of Molybdenum Oxide Nanobelts by Fe Ion Intercalation for Aerobic Oxidative Desulfurization[J].ACS Applied Nano Materials, 2021, 4(12):13379-13387[8]Lü H, Ren W, Liao W, et al.Aerobic oxidative desulfurization of model diesel using a B-type Anderson catalyst [(C18H37) 2N (CH3) 2] 3Co (OH) 6Mo6O18· 3H2O[J]. Applied Catalysis B: Environmental, 2013, 138: 79-83.[J].Applied Catalysis B, 2013, 138(1):78-93[9]Lü H, Zhang Y, Jiang Z, et al.Aerobic oxidative desulfurization of benzothiophene,dibenzothiophene and 4,6-dimethyldibenzothiophene using an Anderson-type catalyst [(C 18 H 37) 2 N (CH 3) 2] 5 [IMo 6 O 24][J].Green Chemistry, 2010, 12(11):1954-1958[10]Zou Y, Wang C, Chen H, et al.Scalable and facile synthesis of V2O5 nanoparticles via ball milling for improved aerobic oxidative desulfurization[J].Green Energy & Environment, 2021, 6(2):169-175[11]Zhang M, Liao W, Wei Y, et al.Aerobic Oxidative Desulfurization by Nanoporous Tungsten Oxide with Oxygen Defects[J].ACS Applied Nano Materials, 2021, 4(2):1085-1093[12]Gu Q, Wen G, Ding Y, et al.Reduced graphene oxide: a metal-free catalyst for aerobic oxidative desulfurization[J].Green Chemistry, 2017, 19(4):1175-1181[13]Yao X, Wang C, Liu H, et al.Immobilizing highly catalytically molybdenum oxide nanoparticles on graphene-analogous bn: stable heterogeneous catalysts with enhanced aerobic oxidative desulfurization performance[J].Industrial & Engineering Chemistry Research, 2018, 58(2):863-871[14]Wu P, Zhu W, Dai B, et al.Copper nanoparticles advance electron mobility of graphene-like boron nitride for enhanced aerobic oxidative desulfurization[J]. Chemical Engineering Journal, 2016, 301: 123-131.[J].Chemical Engineering Journal, 2016, 301(1):123-131[15]Wu P, Zhu W, Chao Y, et al.A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization[J].Chemical Communications, 2016, 52(1):144-147[16]Vallés-García C, Santiago-Portillo A, álvaro M, et al.MIL-101 (Cr)-NO2 as efficient catalyst for the aerobic oxidation of thiophenols and the oxidative desulfurization of dibenzothiophenes[J]. Applied Catalysis A: General, 2020, 590: 117340.[J].Applied Catalysis A, 2020, 590(1):117340-117340[17]Gómez-Paricio A, Santiago-Portillo A, Navalón S, et al.MIL-101 promotes the efficient aerobic oxidative desulfurization of dibenzothiophenes[J].Green Chemistry, 2016, 18(2):508-515[18]An X, Zhu L, Xiao J, et al.Engineering hollow mesoporous silica supported cobalt molybdate catalyst by dissolution-regrowth strategy for efficiently aerobic oxidative desulfurization[J]. Fuel, 2022, 325: 124755.[J].fuel, 2022, 325(1):124755-124755[19]Guo J, Chu L, Wang L, et al.Self-templated fabrication of CoMoO4-Co3O4 hollow nanocages for efficient aerobic oxidative desulfurization[J]. Applied Surface Science, 2022, 579: 152251.[J].Applied Surface Science, 2022, 579(1):152251-152251[20]Liu X Y, Li X P, Zhao R X.Ce2 (MoO4)3 as an efficient catalyst for aerobic oxidative desulfurization of fuels[J].Petroleum Science, 2022, 19(2):861-869[21]An X, Jiang W, He J, et al.Modulating electronic characteristics of nickel molybdate via an effective manganese-doping strategy to enhance oxidative desulfurization performance[J].Inorganic Chemistry, 2022, 61(51):21067-21075[22]Moosavifard S E, Shamsi J, Fani S, et al.D ordered nanoporous NiMoO4 for high-performance supercapacitor electrode materials[J].RSC Advances, 2014, 4(94):52555-52561[23]肖博文, 侯浩杰, 朱明琦, 等.硬模板自组装技术的研究现状及应用[J].化工新型材料, 2020, 48(6):9-14[24]Juli?o D, Gomes A C, Pillinger M, et al.Desulfurization of diesel by extraction coupled with Mo-catalyzed sulfoxidation in polyethylene glycol-based deep eutectic solvents[J]. Journal of Molecular Liquids, 2020,309:113093-113100.[J].Journal of Molecular Liquids, 2020, 309(1):113093-113100[25]Shi Y, Liu G, Zhang B, et al.Oxidation of refractory sulfur compounds with molecular oxygen over a Ce–Mo–O catalyst[J].Green Chemistry, 2016, 18(19):5273-5279[26]Chen H, Liang C, Xun S, et al.Oxygen vacancy regulation strategy in V-Nb mixed oxides catalyst for enhanced aerobic oxidative desulfurization performance[J]. Journal of Colloid and Interface Science, 2023, 641: 289-298.[J].Journal of Colloid and Interface Science, 2023, 641(1):289-298[27]Yu Z, Xun S, Jing M, et al.Construction of 3D TiO2 nanoflower for deep catalytic oxidative desulfurization in diesel: Role of oxygen vacancy and Ti3+[J]. Journal of Hazardous Materials, 2022, 440: 129859.[J].Applied Catalysis A, 2020, 589(1):117308-117308[28]Li S W, Zhang H Y, Han T H, et al.A spinosus Fe3O4@ MOF-PMoW catalyst for the highly effective oxidative desulfurization under oxygen as oxidant[J]. Separation and Purification Technology, 2021, 264: 118460.[J].Separation and Purification Technology, 2021, 264(1):118460-118460[29]Cao Y, Wang H, Ding R, et al.Highly efficient oxidative desulfurization of dibenzothiophene using Ni modified MoO3 catalyst[J]. Applied Catalysis A: General, 2020, 589: 117308.[J].Applied Catalysis A, 2020, 589(1):117308-117308[30]Akbari A, Omidkhah M, Darian J T.Investigation of process variables and intensification effects of ultrasound applied in oxidative desulfurization of model diesel over MoO3Al2O3 catalyst[J].Ultrasonics sonochemistry, 2014, 21(2):692-705[31]Lü H, Deng C, Ren W, et al.Oxidative desulfurization of model diesel using [(C4H9) 4N] 6Mo7O24 as a catalyst in ionic liquids[J]. Fuel processing technology, 2014, 119: 87-91.[J].Fuel processing technology, 2014, 119(1):87-91[32]Li H, Zhu W, Wang Y, et al.Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride[J].Green Chemistry, 2009, 11(6):810-815[33]Ma C, Chen D, Liu F, et al.Oxidative desulfurization of a model fuel using ozone oxidation generated by dielectric barrier discharge plasma combined with Co3O4γ-Al2O3 catalysis[J].RSC advances, 2015, 5(117):96945-96952[34]Zhang Q, Zhang J, Yang H, et al.Efficient aerobic oxidative desulfurization over Co–Mo–O bimetallic oxide catalysts[J].Catalysis Science & Technology, 2019, 9(11):2915-2922[35]Bai J, Song Y, Wang C, et al.Engineering the electronic structure of Mo sites in Mn–Mo–O mixed-metal oxides for efficient aerobic oxidative desulfurization[J].Energy & Fuels, 2021, 35(15):12310-12318[36]Song Y, Bai J, Jiang S, et al.Co-Fe-Mo mixed metal oxides derived from layered double hydroxides for deep aerobic oxidative desulfurization[J]. Fuel, 2021, 306: 121751.[J].fuel, 2021, 306(1):121751-121751 |