[1] Trivedi HK, Gerardi DT, Toth DK, Girouard RF, Hellman PT, Givan GD. Enhanced ester (MIL-PRF-23699G) gas turbine engine lubricant degradation with VIM VAR M50 bearings. Lubrication Science. 2023,35(4):237‐248. doi:10.1002/ls.1635[2] MIL-PRF-23699G. Lubricating oil, aircraft turbine engine, syn- thetic base, NATO code numbers 0-152, 0-154, 0-156 and 0-167, 13 March 2014[3] 尹开吉,唐红金,梁宇翔,等.高性能型航空涡轮发动机润滑油的研制[J].石油炼制与化工, 2020,51(6):102-107.[4] J. M. Hall.Wear and Friction Studies of Neopentyl Polyol Ester Lubricants, A S L E Transactions, 1969,12(4):242-253, DOI: 10.1080/05698196908972268[5] Spencer Matthew, Shepherd T, Greenwood R, et al.?An Assessment of the Influence of Gas Turbine Lubricant Thermal Oxidation Test Method Parameters Towards the Development of a New Engine Representative Laboratory Test Method. SAE International Journal of Aerospace, 6(2), 819–827.?http://doi.10.4271/2013-01-9004.[6] Niedzielski, Edmund L .Neopentyl Polyol Ester Lubricants-Boundary Composition Limits[J].Industrial & Engineering Chemistry Product Research & Development, 1977, 16(4):300-305.DOI:10.1021/i360064a008.[7] Thomas L. Ashcratf, Jr., Paul J.Berlowitz, Max J.Wisotsky, et al. Technical pentaerythritol esters as lubricant base stock: US 5503761[P].1996-04-02[8] Carr, Dale D. (Morristown, NJ),Degeorge Deceased,el?al.Synthetic lubricant base stock of monopentaerythritol and trimethylolpropane esters[P].U.S.Patent: 4826633,1989.[9] Karis T E , Miller J L , Hunziker H E ,et al.Oxidation chemistry of a pentaerythritol tetraester Oil[J].Tribology Transactions, 1999, 42(3):431-442.DOI:10.1080/10402009908982239.[10] PaulJ. Sniegoski.Selectivity of the oxidative attack on a model ester lubricant. A S L E Transactions.1977,20(4):282–286. https://doi.org/10.1080/05698197708982844.[11] Chao TS, Kjonaas M, DeJovine J. Esters from branched-chain acids and neopentylpolyols and phenols as base fluids for synthetic lubricants. Ind.Eng. Chem. Prod. Res. Dev.. 1983,22(2):357–362. https://doi.org/10.1021/i300010a037[12] Airey J , Spencer M, Greenwood R, et al. The effect of gas turbine lubricant base oil molecular structure on friction[J].Tribology International, 2019, 146:106052.DOI:10.1016/j.triboint.2019.106052.[13] Zhang J, Tan A, Spikes H. Effect of base oil structure on elastohydrodynamic friction[J].Tribology Letters, 2017, 65(1):13.DOI:10.1007/s11249-016-0791-7.[14] 赵燕. 化学结构及组成对合成酯摩擦特性的影响研究[D].青岛理工大学,2018.[15] 唐红金,梁宇翔.航空发动机润滑油高温抗氧剂的研究[J].石油炼制与化工, 2016, 47(9):81-87.[16] 唐红金,梁宇翔,尹开吉,等. 多元醇酯基航空发动机润滑油高温抗氧剂的研制[J]. 润滑油,2019, 5(34):23–28.[17] Li, Weimin; Jiang, Cheng; Xu, Nan; etc. Tribological properties of polyol-ester-based lubricants and their influence on oxidation stability[J].Proceedings of the Institution of Mechanical Engineers, Part J. Journal of engineering tribology, 2019, 233(6):1-8. doi:10.1177/1350650118799546.[18] 张辉.二苯胺烷基化催化剂的改性及其应用[J].石油炼制与化工,2017,48(04):41-46.[19] 张辉.壬基化二苯胺抗氧剂的合成及性能研究[J].石油炼制与化工,2022,53(06):116-119.[20] 吴燕霞, 李维民, 王晓波. 磷系极压抗磨剂在酯类油中的摩擦学性能[J]. 石油学报(石油加工), 2015, 31(5):1122-1128. [21] 陈云龙,李维民,马瑞等.含磷抗磨添加剂在三羟甲基丙烷油酸酯中的性能研究[J].润滑油,2018,33(02):43-47.[22] 贺景坚. 高载荷低腐蚀极压抗磨剂的研制[J]. 石油炼制与化工, 2019, 50(6):75-79.[23] 张伟,马楷,刘月皞等.磷酸胺在合成酯航空润滑油中的摩擦学特性[J].合成润滑材料,2021,48(03):8-12.[24] 周少鹏,尹开吉,唐红金等.润滑油与橡胶相容性的研究现状[J].润滑油,2018,33(01):1-11.[25] 周少鹏,梁宇翔,尹开吉,等.橡胶在季戊四醇酯基础油中溶胀规律的理论模型[J].石油学报(石油加工),2019,35(05):899-910.[26] 崔振涛.丁腈橡胶与航空发动机油的相容性研究[J].合成润滑材料,2021,48(03):30-32.[27] Waal G V D .The relationship between the chemical structure of ester base fluids and their influence on elastomer seals, and wear characteristics[J].Lubrication Science, 2010, 1(4):280-301.DOI:10.1002/jsl.3000010404. |