石油炼制与化工 ›› 2024, Vol. 55 ›› Issue (9): 177-186.
• 综述 • 上一篇
冯思涵1,周晨光2,王东军1,王伟众1,郝海军2,贾建光2,徐庆红2
收稿日期:
2023-11-09
修回日期:
2024-03-05
出版日期:
2024-09-12
发布日期:
2024-08-28
通讯作者:
徐庆红
E-mail:xuqh@mail.buct.edu.cn
基金资助:
Received:
2023-11-09
Revised:
2024-03-05
Online:
2024-09-12
Published:
2024-08-28
摘要: 由于在α-烯烃、二烯烃以及苯乙烯聚合中的单中心催化性能,茂金属催化剂备受学术界和企业界的关注。为了进一步提高催化剂的活性、利用效率以及防止粘釜现象的发生和有效控制催化产物的微形貌,茂金属催化剂通常要负载在载体上进行使用。对茂金属催化剂的基本结构及发展历程进行了介绍,综述了茂金属催化剂载体的种类,包括MgCl2、分子筛或多孔材料、层状材料、聚合物、碳纳米管和石墨、硅胶载体,总结了其自负载的特点和性能,指出开发高活性催化剂及其高效负载化工艺仍是今后该领域的重要工作。
冯思涵 周晨光 王东军 王伟众 郝海军 贾建光 徐庆红. 烯烃聚合用茂金属催化剂及其载体[J]. 石油炼制与化工, 2024, 55(9): 177-186.
[1] Montagna A A, Burkhart R M, Dekmezian A H. The evolution of single-site catalysis [J]. Chemtech, 1997, 27(12): 26–31.[2] Kealy T J, Pauson P L. A new type of organo-iron compound [J]. Nature, 1951, 168: 1039–1040.[3] Breslow D S, Newburg N R. Bis-(Cyclopentadienyl)-Titanium Dichloride- lkylaluminum Complexls as Catalysts for the Polymerization of Ethylene [J]. Journal of the American Chemical Society, 1957, 79(18): 5072–5073.[4] Reichert K H, Meyer K R. Zur kinetik der niederdruckpolymerisation von ?thylen mit l?slichen Ziegler-katalysatoren [J]. Makromolecular Chemistry, 1973, 169: 163–176.[5] Andersen A, Cordes H G, Herwig H, et.al. Halogen-Free Soluble Ziegler Catalysts for the Polymerization of Ethylene. Control of Molecular Weight by Choice of Temperature [J]. Angewandte Chemie. International Ed. in English, 1976, 15: 630–632.[6] Wild F R W P, Wasiucionek M, Huttner G, et.al. ansa-Metallocene derivatives: VII. Synthesis and crystal structure of a chiral ansa-zirconocene derivative with ethylene-bridged tetrahydroindenyl ligands [J]. Journal of Organometallic Chemistry, 1985, 288: 63–67.[7] Kaminsky W, Külper K, Brintzinger H H, et.al. Polymerisation von propen und buten mit einem chiralen zirconocen und methylaluminoxan als cokatalysator [J]. Angewandte Chemie. International Ed. in English, 1985, 97: 507–508.[8] Hamielec A E, Soares J B P. Polymerization reaction engineering-Metallocene catalysts [J]. Progress in Polymer Science. 1996, 21(4): 651–706.[9] Johnson J C. Metallocene Technology, Noys Data Corporation: Park Bridge, New Jersey. 1973.[10] Long N J Metallocenes. Blackwell Science Ltd. 1998.[11] Reddy S S, Sivaram S. Homogeneous metallocene-methylaluminoxane catalyst systems for ethylene polymerization [J]. Progress in Polymer Science, 1995, 20(2): 309–367.[12] Alt H G, Jung M, Kehr G. C1-verbrückte Fluorenyliden-Indenylidenkomplexe des Typs (C13H8-CR2-C9H6-nR′n)ZrCl2 (n=0, 1; R=Me, Ph, Butenyl; R′=Alkyl, Alkenyl) als Metallocenkatalysatorvorstufen für die Ethylenpolymerisation [J]. Journal of Organometallic Chemistry, 1998, 562: 153–181.[13] Alt H G, K?ppl A. Effect of the Nature of Metallocene Complexes of Group IV Metals on Their Performance in Catalytic Ethylene and Propylene Polymerization [J]. Chemical Reviews, 2000, 100(4): 1205–1221.[14] Alt H G. The heterogenization of homogeneous metallocene catalysts for olefin polymerization [J]. Journal of the chemical society-dalton transactions, 1999, 11: 1703–1709.[15] Kaminsky W, Steiger R. Polymerization of olefins with homogeneous zirconocene/alumoxane catalysts [J]. Polyhedron, 1988, 7(22?23): 2375–2381.[16] Olabisi O, Atiqullah M, Kaminsky W, et.al. Group 4 metallocenes: supported and unsupported [J]. Macromolecular Chemistry and Physics C. 1997, 37(3): 519–554.[17] Flory P J. Principles of polymer chemistry, Cornell university: Ithaca, New York, 1953.[18] Soares J B P, Hamielec A E. Deconvolution of chain-length distributions of linear polymers made by multiple-site-type catalysts [J]. Polymer, 1995, 36(11): 2257–2263.[19] 韩云光, 郭桂悦, 满艳茹, 等. 茂金属催化剂载体化研究进展 [J]. 江苏化工. 2005, 33(3):18–21.[20] Manabu K, Kazuo S. Polymerization of propene with the catalyst systems composed of Al2O3- or MgCl2-supported Et[IndH4]2ZrCl2 and AlR3 (R=CH3, C2H5) [J]. Makromolecular Chemical Rapid Communication. 1991, 12, 367–372.[21] Kazuo S, Toshiya U, Masayoshi S, et al. Structure of polypropene and poly(ethylene-co-propene) produced with an alumina-supported CpTiCl3/common alkylaluminium catalyst system [J]. Macromolecular Chemistry and Physics. 1994, 195: 1503–1515.[22] Kazuo S, Ryutaro K, Toshiya U. Syndiotactic polymerization of styrene with Al2O3-supported Cp(*)TiCl3 (Cp: Cyclopentadienyl, Cp(*): 1,2,3,4,5-pentamethylcyclopentadienyl) catalyst activated by trialkylaluminiums [J]. Makromolecular Chemical Rapid Communication, 1993, 14: 511–514.[23] Maria de F V M, Moacir de A. Alumina as support for metallocene catalyst in ethylene polymerization [J]. Journal of Polymer Science Part A Polymer Chemistry, 2004, 42: 9–21.[24] Motta A, Fragalà I L, Marks T J. Links between single-site heterogeneous and homogeneous catalysis [J]. Journal of the American Chemical Society, 2008, 130: 16533-16546. [25] Bailly J C, Chabrand C J. Catalyst and prepolymer used for the preparation of polyolefins [J]. EP0435514 [P], 1991.[26] Bailly J C, Bres P, Chabrand C, et.al. Catalyst and prepolymer used for the preparation of polyolefins. US5106804 [P], 1992.[27] Sensarma S, Sivaram S. Magnesium chloride supported bis(cyclopentadienyl)titanium(IV) dichloride-MAO catalyst for ethylene polymerization [J]. Macromol Chemistry and Physics, 1997, 198: 495–503.[28] Sensarma S, Sivaram S. A magnesium chloride supported bis(cyclopentadienyl)- zirconium(IV) dichloride catalyst for the polymerization of ethylene [J]. Macromolecular Chemistry and Physics, 1999, 200: 323–329.[29] Soga K, Arai T, Uozumi T. Polymerization of propene over a MgCl2-supported dichlorosilylenebisindenylzirconium dichloride catalyst combined with methylalumoxane [J]. Polymer, 1997, 38(19): 4993–4995.[30] Kang K K, Oh J K, Jeong Y T, et al. Highly active MgCl2-supported CpMCl3 (M=Ti, Zr) catalysts for ethylene polymerization [J]. Macromolecular Rapid Communication, 1999, 20(6): 308–311.[31] Xu J T, Zhao J, Fan Z Q, et al. ESR study on MgCl2-supported half-titanocene catalyst for syndiospecific polymerization of styrene [J]. European Polymer Journal. 1999, 35(1): 127–132.[32] Ferreira M L, Damiani D E, Juan A. Semiempirical study of metallocenes adsorption on α-MgCl2 [J]. Computational Materials Science, 1998, 9(3-4): 357–366. [33] Marco M, Angelina A, Francesco C, et al. Zeolite supported polymerization catalysts: Copolymerization of ethylene and α-olefins with metallocenes supported on HY zeolite [J]. Journal of Molecular Catalysis A Chemical, 1998, 129: 241–248.[34] Seong I W, Young S K, Taek K H. Polymerization of ethylene over metallocenes confined inside the supercage of a NaY zeolite [J]. Macromolecular Rapid Communication, 1995, 16: 489–494. [35] Young S K, Taek K H, Je W P, et al. Propene polymerization catalyzed over MCM-41 and VPI-5-supported Et(ind)2ZrCl2 catalysts [J]. Macromolecular Rapid Communication, 1996, 17: 749–758. [36] Young S K, Seong I W. Shape and diffusion of the monomer-controlled copolymerization of ethylene and α-olefins over Cp2ZrCl2 confined in the nanospace of the supercage of NaY [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2003, 41: 2171–2179.[37] Kumkaew P, Wanke S E, Praserthdam P, et al. Gas-phase ethylene polymerization using zirconocene supported on mesoporous molecular sieves [J]. Journal of Applied Polymer Science, 2003, 87: 1161–1177.[38] Lee K S, Oh C G, Yim J H, et al. Characteristics of zirconocene catalysts supported on Al-MCM-41 for ethylene polymerization [J]. Journal of Molecular Catalysis A: Chemistry, 2000, 159: 301–308.[39] Kageyama K, Tamazawa J I, Aida T. Catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica [J]. Science, 1999, 285: 2113–2115.[40] Kageyama K, Ng S M, Ichikawa H, et.al. Macromolecular synthesis using mesoporous zeolites [J]. Macromolecular Symposia. 2000, 157: 137–142.[41] Ikenaga K, Chen S Z, Ohshima M, et al. Ethylene polymerization over zirconocenes supported on alumina- and titania-based acidic oxides [J]. Catalysis Communication. 2007, 8: 36–38.[42] Grieken R V, Carrero A, Suarez I, et al. Ethylene polymerization over supported MAO/(nBuCp)2ZrCl2 catalysts: influence of support properties [J]. European Polymer Journal, 2007, 43:1267–1277.[43] Heinemann J, Reichert P, Thomann R, et al. Polyolefin nanocomposites formed by melt compounding and transition metal catalyzed ethene homo- and copolymerization in the presence of layered silicates [J]. Macromolecular Rapid Communication, 1999, 20: 423–430.[44] Weiss K, Wirth-Pfeifer C, Hofmann M, et al. Polymerisation of ethylene or propylene with heterogeneous metallocene catalysts on clay minerals [J]. Journal of Molecular Catalysis A-Chemical. 2002, 182-183: 143–149.[45] Liu C B, Tang T, Huang B T. Zirconocene catalyst well spaced inside modified montmorillonite for ethylene polymerization: role of pretreatment and modification of montmorillonite in tailoring polymer properties [J]. Journal Catalysis, 2004, 221: 162–169.[46] Yang F, Zhang X Q, Zhao H C, et.al. Influence of montmorillonite on syndiotactic polymerization behavior of styrene [J]. Journal of Applied Polymer Sciences, 2007, 104: 2755–2759.[47] Buffet J C, Byles C F H, Felton R, et.al. Metallocene supported core@LDH catalysts for slurry phase ethylene polymerisation [J]. Chemical Communication, 2016, 52: 4076–4079.[48] Beck S, Brough A R, Bochmann M. á-Zirconium phosphonates as new supports for metallocene catalysts [J]. Journal of Molecular Catalysis A: Chemistry, 2004, 220: 275–284.[49] Markus S, Fabian K, Yi T, et al. Novel Graphene UHMWPE Nanocomposites Prepared by Polymerization Filling Using Single-Site Catalysts Supported on Functionalized Graphene Nanosheet Dispersions [J]. Macromolecules, 2012, 45(17): 6878–6887.[50] Herrmann H F, Bachmann B, Hierholzer B, et.al. Catalyst for the polymerization of olefins, process for its preparation and its use. US5942586 [P], 1999.[51] Nishida H, Uozumi T, Arai T, et al. Polystyrene-supported metallocene catalysts for olefin polymerizations [J]. Macromolecular Rapid Communication, 1995, 16(11): 821–830.[52] Park S, Yoon S W, Lee K B, et.al. Carbon Nanotubes as a Ligand in Cp2ZrCl2-Based Ethylene Polymerization [J]. Macromolecular Rapid Communication, 2006, 27: 47–50.[53] Choi Y Y, Shin S Y A, Soare J B P. Preparation of polyethylene/montmorillonite nanocomposites through in situ polymerization using a montmorillonite-supported nickel diimine catalyst [J]. Macromolecular Chemistry and Physics. 2010, 211: 1026–1034.[54] Kaminsky W, Renner F. High melting polypropenes by silica-supported zirconocene catalysts [J]. Macromolecular Rapid Communication, 1993, 14(4): 239–243.[55] Chien J C W, He D W. Olefin copolymerization with metallocene catalysts. III. Supported metallocene/methylaluminoxane catalyst for olefin copolymerization [J]. Journal of Polymer Sciences A Polym Chem. 1991, 29(11): 1603–1607.[56] Soga K, Kim H J, Shiono T. Polymerization of propene with highly isospecific. SiO2-supported zirconocene catalysts activated with common alkylaluminiums [J]. Macromolecular Chemistry and Physics. 1994, 195(10): 3347–3360.[57] Lotfia E M, Shi Y S, Yuan Y, Zhou A N, Abubaker A, Xu Q H. Preparation, characterization, and catalytic activity of zirconocenebridged on surface of silica gel [J]. Applied Surface Sciences, 2015, 353: 376–381.[58] Licht A I, Alt H G. Umsetzungen von ù-alkenylsubstituierten Zirconocendichloridkomplexen mit n-Alkyllithiumverbindungen in gegenwart von Alkenen bzw. alkinen [J]. Journal of Organometallic Chemistry. 2003, 687: 142–152. |
[1] | 王森 孟繁春 李卓 杨慧敏 代晓敏 白靖 许云华 覃勇 张斌. 有序介孔炭负载Pt-MoOx催化剂的制备及其催化甲基环己烷脱氢性能[J]. 石油炼制与化工, 2024, 55(9): 33-41. |
[2] | 张玉玉 唐瑞源 商雁超 田原宇 曹鹏程 罗建玲 杨婷婷. 煤焦油加氢制喷气燃料催化剂的开发及性能研究[J]. 石油炼制与化工, 2024, 55(4): 19-27. |
[3] | 于松印 崔钰函 刘洋 梁长海 李闯. 脂肪酸多相选择性加氢制备脂肪醇研究进展[J]. 石油炼制与化工, 2024, 55(2): 43-51. |
[4] | 陈慧玲 高辉 陈加波 王洪臣 齐鲁 刘国华 敖梓鼎 牛晓旭. 污水处理IFAS工艺中生物载体对N2O的减排作用[J]. 石油炼制与化工, 2023, 54(7): 113-122. |
[5] | 苗鹏杰 陈自娇 李守柱 周健. 利用废渣制备催化裂化催化剂及其催化性能研究[J]. 石油炼制与化工, 2022, 53(9): 72-77. |
[6] | 贾燕子 赵新强 邓中活 胡大为 杨清河 李坚. 双峰孔对渣油加氢降残炭催化剂性能的影响[J]. 石油炼制与化工, 2022, 53(3): 9-15. |
[7] | 郑玥石 占敬敬. 气溶胶法炭负载纳米零价铁吸附与化学还原性能研究[J]. 石油炼制与化工, 2022, 53(12): 59-64. |
[8] | 张海峰. 半再生催化重整装置热载体系统优化与节能分析[J]. 石油炼制与化工, 2022, 53(10): 82-85. |
[9] | 张静 左童久 陆江银. 分子筛镍基催化剂对1,4-丁炔二醇加氢制1,4-丁烯二醇催化性能研究[J]. 石油炼制与化工, 2021, 52(9): 25-30. |
[10] | 陈拥军 王庆忠 张三华 倪黎 宋志东 李荣华. 蒽醌法制双氧水加氢催化剂EK-Ⅲ的研制及工业应用[J]. 石油炼制与化工, 2021, 52(6): 39-43. |
[11] | 孙进 郭蓉 姚运海 刘丽 李扬. 载体性质对加氢脱硫催化剂性能的影响[J]. 石油炼制与化工, 2021, 52(4): 8-14. |
[12] | 王方平 刘辉 郭笑荣 吴兵 熊彬 梁琼 吴新辉 陈鑫. 氧化铝载体工业焙烧条件对孔性质的影响[J]. 石油炼制与化工, 2021, 52(2): 46-50. |
[13] | 张国辉 南军 孙彦民 于海斌. 凝胶成型法制备加氢催化剂载体的研究与工业化生产[J]. 石油炼制与化工, 2020, 51(3): 32-37. |
[14] | 吕子威 何晓礼 赵锐. 城市型炼油厂含盐污水处理系统提质提效改造实践[J]. 石油炼制与化工, 2019, 50(7): 103-108. |
[15] | 吴彦霞 梁海龙 赵春林 陈鑫 陈琛 戴长友 唐婕. 载体对Mn-Ce催化剂低温SCR脱硝性能的影响[J]. 石油炼制与化工, 2019, 50(4): 44-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||