石油炼制与化工 ›› 2024, Vol. 55 ›› Issue (9): 24-32.

• 催化剂 • 上一篇    下一篇

金属与分子筛的匹配性对乙烷催化脱氢性能的影响

谢健鹏,胥月兵,刘冰,刘小浩   

  1. 江南大学化学与材料工程学院
  • 收稿日期:2024-02-18 修回日期:2024-06-06 出版日期:2024-09-12 发布日期:2024-08-28
  • 通讯作者: 胥月兵 E-mail:xuyuebing@jiangnan.edu.cn
  • 基金资助:
    国家自然科学基金;国家自然科学基金

EFFECT OF METAL AND ZEOLITE COMPATIBILITY ON THE CATALYTIC DEHYDROGEANTION OF ETHANE


  • Received:2024-02-18 Revised:2024-06-06 Online:2024-09-12 Published:2024-08-28

摘要: 开发廉价、环境友好且高效的过渡金属分子筛体系用于乙烷催化脱氢制乙烯反应,对补充传统石油路线生产烯烃具有重要意义。金属离子锚定在分子筛中Br?nsted酸位点上可表现出独特的C—H和C—C键选择性活化能力,利用离子交换法考察了一系列过渡金属(Fe,Co,Ni,Cu,Zn,Mn)与不同类型分子筛(MOR,β,Y,MCM-22,MCM-41,SAPO-11,SAPO-34,USY,ZSM-5)间的匹配性对乙烷催化脱氢反应的影响规律。采用X射线衍射、紫外-可见吸收光谱和H2程序升温还原等表征手段揭示落位于Bronsted酸位点上的金属离子具有高度分散和抗还原性质。试验结果及自旋密度泛函理论计算结果表明,Co具有优异的选择性活化C—H键的潜力,但产物分布仍依赖于分子筛的类型和性质。在孔径适宜的分子筛上乙烯选择性可接近100%,否则脱氢产物易在剩余Bronsted酸位点发生二次反应生成芳烃和积炭等产物。

关键词: 过渡金属, 分子筛, 离子交换, 乙烷催化脱氢, C—H键活化

Abstract: It is important to develop cheap, environmentally friendly and efficient transition metal molecular sieve system for catalytic dehydrogenation of ethane in order to supplement the traditional petroleum route for olefin production. Metal ions anchored to Br?nsted acid sites in zeolite by ion exchange method showed unique C—H and C—C bond-selective activation. The effects of the compatibility of a series of transition metals (Fe, Co, Ni, Cu, Zn and Mn) with different types of molecular sieves (MOR, β, Y, MCM-22, MCM-41, SAPO-11, SAPO-34, USY and ZSM-5) on the catalytic dehydrogenation of ethane were investigated by ion exchange method. The results of X-ray diffraction, ultraviolet and visible spectrophotometry and H2-temperature programmed reduction characterizations showed that the metal ions at the Bronsted acid site were highly dispersed and resistant to reduction. The experimental results and density functional theory calculations showed that Co had excellent potential for selective activation of C—H bonds, but the product distribution still depended on the type and properties of molecular sieve. The selectivity of ethylene could be close to 100% on the zeolite with suitable pore size, otherwise the dehydrogenated products were prone to secondary reaction at the remaining Bronsted acid site to form aromatics and carbon deposits.

Key words: transition metal, zeolite, ion exchange, ethane catalytic dehydrogenation, C—H bond activation