[1]. Wang, Z.; Liu, G.; Zhang, X., Efficient and stable Pt/CaO-TiO2-Al2O3 for the catalytic dehydrogenation of cycloalkanes as an endothermic hydrocarbon fuel. Fuel 2023, 331.[2]. Muzzio, M.; Lin, H.; Wei, K.; Guo, X.; Yu, C.; Yom, T.; Xi, Z.; Yin, Z.; Sun, S., Efficient Hydrogen Generation from Ammonia Borane and Tandem Hydrogenation or Hydrodehalogenation over AuPd Nanoparticles. ACS Sustainable Chemistry & Engineering 2020, 8 (7), 2814-2821.[3]. Zhu, J.; Zhang, Y.; Liu, Z.; Cui, J.; Xia, Z.; Ma, J.; Zhou, J.; Hu, Z.; Wang, J.-Q.; Zhao, X.; Zhang, L., Micro-beam XAFS reveals in-situ 3D exsolution of transition metal nanoparticles in accelerating hydrogen separation. The Innovation Materials 2024.[4]. Meng, J.; Zhou, F.; Ma, H.; Yuan, X.; Wang, Y.; Zhang, J., A Review of Catalysts for Methylcyclohexane Dehydrogenation. Topics in Catalysis 2021, 64 (7-8), 509-520.[5]. Zhang, X.; He, N.; Lin, L.; Zhu, Q.; Wang, G.; Guo, H., Study of the carbon cycle of a hydrogen supply system over a supported Pt catalyst: methylcyclohexane–toluene–hydrogen cycle. Catalysis Science & Technology 2020, 10 (4), 1171-1181.[6]. Mi, C.; Huang, Y.; Chen, F.; Wu, K.; Wang, W.; Yang, Y., Density functional theory study on dehydrogenation of methylcyclohexane on Ni–Pt(111). International Journal of Hydrogen Energy 2021, 46 (1), 875-885.[7]. Dai, Y.; Gao, X.; Wang, Q.; Wan, X.; Zhou, C.; Yang, Y., Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chemical Society Reviews 2021, 50 (9), 5590-5630.[8]. Sattler, J. J. H. B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B. M., Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chemical Reviews 2014, 114 (20), 10613-10653.[9]. Takise, K.; Sato, A.; Murakami, K.; Ogo, S.; Seo, J. G.; Imagawa, K.-i.; Kado, S.; Sekine, Y., Irreversible catalytic methylcyclohexane dehydrogenation by surface protonics at low temperature. Rsc Advances 2019, 9 (11), 5918-5924.[10]. Yolcular, S.; Olgun, O., Ni/Al2O3 catalysts and their activity in dehydrogenation of methylcyclohexane for hydrogen production. Catalysis Today 2008, 138 (3-4), 198-202.[11]. Li, X.; Ma, D.; Xinhe, B. A. O., Dispersion of Pt Catalysts Supported on Activated Carbon and Their Catalytic Performance in Methylcyclohexane Dehydrogenation. Chinese Journal of Catalysis 2008, 29 (3), 259-263.[12]. Li, H.; Fang, W.; Wang, L.-X.; Liu, Y.; Liu, L.; Sun, T.; Liao, C.; Zhu, Y.; Wang, L.; Xiao, F.-S., Physical regulation of copper catalyst with a hydrophobic promoter for enhancing CO2 hydrogenation to methanol. The Innovation 2023, 4 (4).[13]. Du, J.; Zhao, R.; Jiao, G., The short-channel function of hollow carbon nanoparticles as support in the dehydrogenation of cyclohexane. International Journal of Hydrogen Energy 2013, 38 (14), 5789-5795.[14]. Fei, S.; Wang, Y.; Wu, H.; Zheng, N.; Fang, X.; Liu, D., Synergistic Strategy for the Fast Dehydrogenation of Liquid Organic Hydrogen Carriers over a Pd/MoO3 Catalyst. ACS Applied Energy Materials 2022, 5 (9), 10562-10571.[15]. Boufaden, N.; Pawelec, B.; Fierro, J. L. G.; Lopez, R. G.; Akkari, R.; Zina, M. S., Hydrogen storage in liquid hydrocarbons: Effect of platinum addition to partially reduced Mo-SiO2 catalysts. Materials Chemistry and Physics 2018, 209, 188-199.[16]. Boufaden, N.; Akkari, R.; Pawelec, B.; Fierro, J. L. G.; Zina, M. S.; Ghorbel, A., Dehydrogenation of methylcyclohexane to toluene over partially reduced silica-supported Pt-Mo catalysts. Journal of Molecular Catalysis a-Chemical 2016, 420, 96-106.[17]. Qiao, H.; Xia, Z.; Liu, Y.; Cui, R.; Fei, Y.; Cai, Y.; Wei, Q.; Yao, Q.; Qiao, Q., Sonochemical synthesis and high lithium storage properties of ordered Co/CMK-3 nanocomposites. Applied Surface Science 2017, 400, 492-497.[18]. Fang, G.; Liu, G.; Yang, Y.; Wang, S., Quartz crystal microbalance sensor based on molecularly imprinted polymer membrane and three-dimensional Au nanoparticles@mesoporous carbon CMK-3 functional composite for ultrasensitive and specific determination of citrinin. Sensors and Actuators B: Chemical 2016, 230, 272-280.[19]. Rivoira, L.; Juárez, J.; Falcón, H.; Gómez Costa, M.; Anunziata, O.; Beltramone, A., Vanadium and titanium oxide supported on mesoporous CMK-3 as new catalysts for oxidative desulfurization. Catalysis Today 2017, 282, 123-132.[20]. Zhang, P.; Zhang, J.; Dai, S., Mesoporous Carbon Materials with Functional Compositions. Chemistry – A European Journal 2016, 23 (9), 1986-1998.[21]. Gao, Z.; Qin, Y., Design and Properties of Confined Nanocatalysts by Atomic Layer Deposition. Accounts of Chemical Research 2017, 50 (9), 2309-2316.[22]. Ge, H.; Zhang, B.; Liang, H.; Zhang, M.; Fang, K.; Chen, Y.; Qin, Y., Photocatalytic conversion of CO2 into light olefins over TiO2 nanotube confined Cu clusters with high ratio of Cu+. Applied Catalysis B: Environmental 2020, 263.[23]. Liang, X.; Jiang, C., Atomic layer deposited highly dispersed platinum nanoparticles supported on non-functionalized multiwalled carbon nanotubes for the hydrogenation of xylose to xylitol. Journal of Nanoparticle Research 2013, 15 (9).[24]. Wu, F.; Huang, R.; Mu, D.; Shen, X.; Wu, B., A novel composite with highly dispersed Fe3O4 nanocrystals on ordered mesoporous carbon as an anode for lithium ion batteries. Journal of Alloys and Compounds 2014, 585, 783-789.[25]. Juárez, J. M.; Gómez Costa, M. B.; Anunziata, O. A., Synthesis and characterization of Pt-CMK-3 hybrid nanocomposite for hydrogen storage. International Journal of Energy Research 2015, 39 (1), 128-139.[26]. Li, L.; Zhu, Z. H.; Lu, G. Q.; Yan, Z. F.; Qiao, S. Z., Catalytic ammonia decomposition over CMK-3 supported Ru catalysts: Effects of surface treatments of supports. Carbon 2007, 45 (1), 11-20.[27]. Li, J.; Zhang, B.; Chen, Y.; Zhang, J.; Yang, H.; Zhang, J.; Lu, X.; Li, G.; Qin, Y., Styrene hydrogenation performance of Pt nanoparticles with controlled size prepared by atomic layer deposition. Catal. Sci. Technol. 2015, 5 (8), 4218-4223.[28]. Wang, Q.; Ding, Y., Charge influence on the first dehydrogenation of methanol by Ptn q (n = 1–3, q = 0, +1, ?1): a computational study. Journal of Molecular Modeling 2017, 23 (2).[29]. Dietrich, P. J.; Wu, T.; Sumer, A.; Dumesic, J. A.; Jellinek, J.; Delgass, W. N.; Ribeiro, F. H.; Miller, J. T., Aqueous Phase Glycerol Reforming with Pt and PtMo Bimetallic Nanoparticle Catalysts: The Role of the Mo Promoter. Topics in Catalysis 2013, 56 (18-20), 1814-1828. |