石油炼制与化工 ›› 2025, Vol. 56 ›› Issue (1): 30-39.
李昕晖1,2,李成祥2,3,葛蔚2,3
收稿日期:
2024-04-08
修回日期:
2024-05-08
出版日期:
2025-01-12
发布日期:
2024-12-27
通讯作者:
李昕晖
E-mail:434745612@qq.com
基金资助:
#br#
Received:
2024-04-08
Revised:
2024-05-08
Online:
2025-01-12
Published:
2024-12-27
摘要: 化工过程中化学反应通常与传递过程共存,气固多相催化剂一般具有复杂多级孔道结构,其催化性能更是取决于其孔道内反应与扩散过程的耦合。揭示反应和扩散耦合规律,准确获得催化剂颗粒尺度上的反应动力学,对新型催化剂优化设计和制备具有重要的科学研究意义和工业应用价值。综述了气固多相催化剂孔道内扩散和反应过程的最新研究进展和反应-扩散耦合的机制,重点介绍反应-扩散耦合模拟研究中的不同模型和方法及其在气固催化反应中的应用。指出将机器学习等人工智能方法和多尺度模拟相结合将会成为研究复杂催化反应体系的一种强大工具。
李昕晖 李成祥 葛蔚. 气固多相催化剂内扩散和反应研究进展[J]. 石油炼制与化工, 2025, 56(1): 30-39.
[1]Errekatxo A, Ibarra A, Gutierrez A, et al.Catalytic deactivation pathways during the cracking of glycerol and glycerol/VGO blends under FCC unit conditions[J].Chemical Engineering Journal, 2017, 307:955-965[2]Mance D, van der Zwan J, Velthoen M E Z, et al.A DNP-supported solid-state NMR study of carbon species in fluid catalytic cracking catalysts[J].Chemical Communications, 2017, 53(28):3933-3936[3]Vogt E T C, Weckhuysen B M.Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis[J].Chemical Society Reviews, 2015, 44(20):7342-7370[4]Abdalla A, Arudra P, Al-Khattaf S S.Catalytic cracking of 1-butene to propylene using modified H-ZSM-5 catalyst: A comparative study of surface modification and core-shell synthesis[J].Applied Catalysis A: General, 2017, 533:109-120[5]Chen Min, Chen Changle.Rational design of high-performance phosphine sulfonate nickel catalysts for ethylene polymerization and copolymerization with polar monomers[J].ACS Catalysis, 2017, 7(2):1308-1312[6]Yu Wei, Tao Jiabo, Yu Xinhai, et al.A microreactor with superhydrophobic Pt–Al2O3 catalyst coating concerning oxidation of hydrogen off-gas from fuel cell[J].Applied Energy, 2017, 185:1233-1244[7]Antolini E.Antolini E. Alloy vs. intermetallic compounds: Effect of the ordering on the electrocatalytic activity for oxygen reduction and the stability of low temperature fuel cell catalysts[J].Applied Catalysis B: Environmental, 2017, 217:201-213[8]Keil F J.Multiscale modelling in computational heterogeneous catalysis[J].Topics in Current Chemistry, 2011, 307:69-107[9]Wheeler A.Reaction rates and selectivity in catalyst pores[J].Adcances in Catalusis, 1951, 3(6):249-327[10]Cao Jun, Zhang Li, Xu Hong, et al.Numerical simulation of the carbon deposition effect in tubular fixed bed methane reforming reactor over Ni-Catalyst[J].Acta Petrolei Sinica Petroleum Processing Section, 2016, 32(5):951-958[11]Cao Jun, Zhang Li, Xu Hong, et al.Numerical simulation on the carbon deposition effect in methane carbon dioxide reforming[J].Chemical Industry and Engineering Progress, 2015, 34(10):3630-3635[12]Shen Wenhao, Zhang Yaxin, Zhao Ling.Simulation of carbon deposition processes on catalysts in a methanation reactor[J].Journal of Chemical Engineering of Chinese Universities, 2020, 34(3):718-727[13]Mei Changsong, Wen Pengyu, Liu Zhicheng, et al.Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5[J].Journal of Catalysis, 2008, 258(1):243-249[14]Liu Zhiqiang, Chu Yueying, Tang Xiaomin, et al.Diffusion dependence of the dual-cycle mechanism for MTO reaction inside ZSM-12 and ZSM-22 zeolites[J].The Journal of Physical Chemistry C, 2017, 121(41):22872-22882[15]Coppens M, Froment G F.Diffusion and reaction in a fractal catalyst pore—IIDiffusion and first-order reaction[J].Chemical Engineering Science, 1995, 50(6):1027-1039[16]Yang Tao, Liu Jianmei, Dai Jinhui, et al.Shaping particles by chemical diffusion and reaction[J].CrystEngComm, 2017, 19(1):72-79[17]Yang Tao, Han Yongsheng.Quantitatively relating diffusion and reaction for shaping particles[J].Crystal Growth & Design, 2016, 16(5):2850-2859[18]Liu Wei, Yang Tao, Li Chengxiang, et al.Regulating silver morphology via electrochemical reaction[J].CrystEngComm, 2015, 17(31):6014-6022[19]Liu Wei, Yang Tao, Liu Jianmei, et al.Controllable synthesis of silver dendrites via an interplay of chemical diffusion and reaction[J].Industrial & Engineering Chemistry Research, 2016, 55(30):8319-8326[20]Li Jinghai, Ge Wei, Wang Wei, et al.Controllable synthesis of silver dendrites via an interplay of chemical diffusion and reaction[J].Current Opinion in Chemical Engineering, 2016, 13:10-23[21]Ge Wei, Chang Qingming, Li Chengxiang, et al.[J]., 2019, 198:198-223[J].Chemical Engineering Science, 2019, 198:198-223[22]Zhang Dongmei, Gy?rgyi L, Peltier W R.Deterministic chaos in the Belousov–Zhabotinsky reaction: Experiments and simulations[J].Chaos: An Interdisciplinary Journal of Nonlinear Science, 1993, 3(4):723-745[23]Li Ning, Delgado J, González-Ochoa H O, et al.Combined excitatory and inhibitory coupling in a 1-D array of Belousov–Zhabotinsky droplets[J].Physical Chemistry Chemical Physics, 2014, 16(22):10965-10978[24]Sun Fei, Huang Wenlai, Li Jinghai.Structural characteristics of adlayer in heterogeneous catalysis[J].Chemical Engineering Science, 2016, 153:87-92[25]Thiele E W.Relation between catalytic activity and size of particle[J].Industrial & Engineering Chemistry, 1939, 31(7):916-920[26]Yang Yang, Rogowska Melania, Zheng Yi, et al.Transient increase in reactive surface and the macroscopic Damk?hler number in chalk dissolution[J].Journal of Hydrology, 2019, 571:21-53[27]Wang Tao, Yang Tiangang, Xiao Chunlei, et al.Dynamical resonances in chemical reactions[J].Chemical Society Reviews, 2018, 47(17):6744-6763[28]Thommes M.Physical adsorption characterization of nanoporous materials[J].Chemie Ingenieur Technik, 2010, 82(7):1059-1073[29]Kikkinides E S, Politis M G.Linking pore diffusivity with macropore structure of zeolite adsorbentsPart II: simulation of pore diffusion and mercury intrusion in stochastically reconstructed zeolite adsorbents[J].Adsorption, 2014, 20(1):21-35[30]Okumura M, Noda Z, Matsuda J, et al.Correlating cathode microstructure with PEFC performance using FIB-SEM and TEM[J].Journal of The Electrochemical Society, 2017, 164(9):F928-F934[31]da Silva J C, Mader K, Holler M, et al.Assessment of the 3D pore structure and individual components of preshaped catalyst bodies by X‐Ray imaging[J].ChemCatChem, 2014, 7(3):413-416[32]Xiong Qingrong, Baychev T G, Jivkov A P.Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport[J].Journal of Contaminant Hydrology, 2016, 192:101-117[33]Kubis A J, Shiflet G J, Hull R, et al.Focused ion-beam tomography[J].Metallurgical and Materials Transactions A, 2004, 35(7):1935-1943[34]Mignot C.Color (and 3D) for scanning electron microscopy[J].Microscopy Today, 2018, 26(3):12-17[35]Zhang Pengfei, Li Junqian, Lu Shuangfang, et al.A precise porosity measurement method for oil-bearing MicroNano porous shales using Low-Field nuclear magnetic resonance (LF-NMR)[J].Journal of Nanoscience and Nanotechnology, 2017, 17(9):6827-6835[36]K?rger J, Pfeifer H.PFG NMR self-diffusion measurements in microporous adsorbents[J].Magnetic Resonance Imaging, 1994, 12(2):235-239[37]Takaba H, Yamamoto A, Hayamizu K, et al.Dependence of the diffusion coefficients of methane in silicalite on diffusion distance as investigated by 1H PFG NMR[J].Chemical Physics Letters, 2004, 393(1-3):87-91[38]Stallmach F, Pusch A, Splith T, et al.NMR relaxation and diffusion studies of methane and carbon dioxide in nanoporous ZIF-8 and ZSM-58[J]..Microporous and Mesoporous Materials, 2015, 205:36-39[39]Jobic H, Bee M W, Kearley G J.Mobility of methane in zeolite NaY between 100 and 250 K: A quasi-elastic neutron-scattering study[J].The Journal of Physical Chemistry, 1994, 98(17):4660-4665[40]Jobic H, Skoulidas A I, Sholl D S.Determination of concentration dependent transport diffusivity of CF4 in silicalite by neutron scattering experiments and molecular dynamics[J].Journal of Physical Chemistry B, 2004, 108(40):10613-10616[41]Talmon Y, Shtirberg L, Harneit W, et al.Molecular diffusion in porous media by PGSE ESR[J].Physical Chemistry Chemical Physics : PCCP, 2010, 12(23):5998-6007[42]Cohen Y, Avram L, Frish L.Diffusion NMR spectroscopy in supramolecular and combinatorial chemistry: An old parameter — new insights[J].Angewandte Chemie International Edition, 2005, 44(4):520-544[43] K?rger J, Ruthven D M, Theodorou D N.Diffusion in nanoporous materials [M]. Weiheim: Wiley-VCH, 2012: 303-345.[44]Jobic H, Kolokolov D I, Stepanov A G, et al.Diffusion of CH4 in ZIF-8 studied by quasi-elastic neutron scattering[J].Journal of Physical Chemistry C, 2015, 119(28):16115-16120[45]Ischenko A A, Weber P M, Miller R J D, et al.Capturing chemistry in action with electrons: Realization of atomically resolved reaction dynamics[J].Chemical Reviews, 2017, 117(16):11066-11124[46]Chenoweth K, van Duin A C T, Goddard W A.ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J].The Journal of Physical Chemistry A, 2008, 112(5):1040-1053[47]Wu Zishan, Gan Quan, Li Xiaolin, et al.Elucidating surface restructuring-induced catalytic reactivity of cobalt phosphide nanoparticles under electrochemical conditions[J].The Journal of Physical Chemistry C, 2018, 122(5):2848-2853[48]van Schrojenstein L E M, Deckert-Gaudig T, Mank A J, et al.Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy[J].Nature Nanotechnology, 2012, 7(9):583-586[49]Britz-Grell A B, Saumer M, Tarasov A.Challenges and opportunities of tip-enhanced raman spectroscopy in liquids[J].The Journal of Physical Chemistry C, 2021, 125(39):21321-21340[50]Zhong Jinhui, Jin Xi, Meng Liangyan, et al.Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution[J].Nature Nanotechnology, 2017, 12(2):132-136[51]Benes N, Verweij H.Comparison of macro and microscopic theories describing multicomponent mass transport in microporous media[J].Langmuir, 1999, 15(23):8292-8299[52]Wongthong P, Rungsirisakun R, Probst M, et al.Adsorption and diffusion of light alkanes on nanoporous faujasite catalysts investigated by molecular dynamics simulations[J].Microporous and Mesoporous Materials, 2007, 100(1-3):160-166[53]Newsome D, Coppens M.Molecular dynamics as a tool to study heterogeneity in zeolites - effect of Na+ cations on diffusion of CO2 and N2 in Na-ZSM-5[J].Chemical Engineering Science, 2015, 121:300-312[54]Rezlerová E, Zukal A, ?ejka J, et al.Adsorption and diffusion of C1 to C4 Alkanes in dual-porosity zeolites by molecular simulations[J].Langmuir, 2017, 33(42):11126-11137[55]Mahoney M W, Jorgensen W L.A five-site model for liquid water and the reproduction of the density anomaly by rigid,nonpolarizable potential functions[J].Journal of Chemical Physics, 2000, 112(20):8910-8922[56]Potoff J J, Siepmann J I.Vapor–liquid equilibria of mixtures containing alkanes,carbon dioxide,and nitrogen[J].American Institute of Chemical Engineers Journal, 2001, 47(7):1676-1682[57]Vanduyfhuys L, Verstraelen T, Vandichel M, et al.Ab initio parametrized force field for the flexible metal-organic framework MIL-53(Al)[J].Journal of Chemical Theory and Computation, 2012, 8(9):3217-3231[58]Amirjalayer S, Snurr R Q, Schmid R.Prediction of structure and properties of boron-based covalent organic frameworks by a first-principles derived force field[J].Journal of Physical Chemistry C, 2012, 116(7):4921-4929[59]Marín M.Event-driven hard-particle molecular dynamics using bulk-synchronous parallelism[J].Computer Physics Communications, 1997, 102(1):81-96[60] Ge Wei, Li Jinghai.Pseudo-particle approach to hydrodynamics of gas/solid two-phase flow[C]. Proceedings of the 5th International Conference on Circulating Fluidized Beds, Beijing: Science Press, 1996: 260-265.[61]Ge Wei, Li Jinghai.Macro-scale phenomena reproduced in microscopic systems-pseudo-particle modeling of fluidization[J].Chemical Engineering Science, 2003, 58(8):1565-1585[62]Lu Jianxin, Zhang Jiayuan, Wang Xiaowei, et al.Parallelization of pseudo-particle modeling and its application in simulating gas–solid fluidization[J].Particuology, 2009, 7(4):317-323[63]Zhang Chenglong, Shen Guofei, Li Chengxiang, et al.Hard-spherepseudo-particle modelling (HS-PPM) for efficient and scalable molecular simulation of dilute gaseous flow and transport[J].Molecular Simulation, 2016, 42(14):1171-1182[64]Alexander F J, Garcia A L.The direct simulation monte carlo method[J].Computers in Physics, 1997, 11(6):588-593[65]Hansen N, Keil F J.Multiscale modeling of reaction and diffusion in zeolites: From the molecular level to the reactor[J].Soft Materials, 2012, 10:179-201[66]Liu Song, van Duin A C T, van Duin D M, et al.Atomistic insights into nucleation and formation of hexagonal boron nitride on nickel from first-principles-based reactive molecular dynamics simulations[J].ACS Nano, 2017, 11(4):3585-3596[67]Senftle T P, Hong S, Islam M, et al.The ReaxFF reactive force-field: development,applications and future directions[J].Npj Computational Matetials, 2016, 2(1):15011-[68]van Duin A C T, Dasgupta S, Lorant F, et al.ReaxFF:? A reactive force field for fydrocarbons[J].The Journal of Physical Chemistry A, 2001, 105(41):9396-9409[69]Shi Yunfeng, Brenner D W.Simulated thermal decomposition and detonation of nitrogen cubane by molecular dynamics[J].The Journal of Chemical Physics, 2007, 127(13):134503-[70]Shi Yunfeng.A minimalist's reactive potential for efficient molecular modelling of chemistry[J].Molecular Simulation, 2015, 41(1-3):3-12[71]Tersoff J.Empirical interatomic potential for carbon,with applications to amorphous carbon[J].Physical Review Letters, 1988, 61(25):2879-2882[72]Brenner D W.Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films[J].Physical Review B, 1990, 42(15):9458-9471[73]Brenner D W.The art and science of an analytic potential[J].Physica Status Solidi B, 2000, 217(1):23-40[74]Stuart S J, Tutein A B, Harrison J A.A reactive potential for hydrocarbons with intermolecular interactions[J].The Journal of Chemical Physics, 2000, 112(14):6472-6486[75]Marks N A.Generalizing the environment-dependent interaction potential for carbon[J].Physical Review B, 2000, 63(3):035401-[76]Shen Xujun, Xiao Yang, Dong Wei, et al.Molecular dynamics simulations based on reactive force-fields for surface chemical reactions[J].Computational and Theoretical Chemistry, 2012, 990:152-158[77]Zheng Mo, Li Xiaoxia, Guo Li.Algorithms of GPU-enabled reactive force field (ReaxFF) molecular dynamics[J].Journal of Molecular Graphics and Modelling, 2013, 41:1-11[78]Liu Jian, Li Xiaoxia, Guo Li, et al.Reaction analysis and visualization of ReaxFF molecular dynamics simulations[J].Journal of Molecular Graphics and Modelling, 2014, 53:13-22[79]Trinchero A, Hellman A, Gr?nbeck H.Methane oxidation over Pd and Pt studied by DFT and kinetic modeling[J].Surface Science, 2013, 616:206-213[80]Gao Mingbin, Li Hua, Yang Miao, et al.A modeling study on reaction and diffusion in MTO process over SAPO-34 zeolites[J].Chemical Engineering Journal, 2019, 377:119668-[81]Guo Wenyao, Wu Wenzhang, Luo Man, et al.Modeling of diffusion and reaction in monolithic catalysts for the methanol-to-propylene process[J].Fuel Processing Technology, 2013, 108:133-138[82]Gao Peng, Li Shenggang, Bu Xianni, et al.Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J].Nature Chemistry, 2017, 9(10):1019-1024[83]Wei Jian, Ge Qingjie, Yao Ruwei, et al.Directly converting CO2 into a gasoline fuel[J].Nature Communications, 2017, 8:15174-[84]de Jong Krijn P.Surprised by selectivity[J].Science, 2016, 351(6277):1030-1031[85]Cheng Kang, Gu Bang, Liu Xiaoliang, et al.Direct and highly selective conversion of synthesis gas into lower olefins: Design of a bifunctional catalyst combining methanol synthesis and carbon–carbon coupling[J].Angewandte Chemie International Edition, 2016, 55(15):4725-4728[86]Li Yanping, Zhao Mingcan, Li Chengxiang, et al.Concentration fluctuation due to reaction-diffusion coupling near an isolated active site on catalyst surfaces[[J].Chemical Engineering Journal, 2019, 373:744-754[87]Zhang Haolei, Zhao Mingcan, Li Yanping, et al.Concentration fluctuation caused by reaction–diffusion coupling near catalytic active sites[J].Chinese Journal of Chemical Engineering, 2022, 50:254-263[88]Li Hongliang, Wang Liangbing, Dai Yizhou, et al.Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation[J].Nature Nanotechnology, 2018, 13(5):411-417[89]Ding Wenjin, Li Hui, Pfeifer P, et al.Crystallite-pore network model of transport and reaction of multicomponent gas mixtures in polycrystalline microporous media[J].Chemical Engineering Journal, 2014, 254:545-558[90]Li Hua, Ye Mao, Liu Zhongmin.A multi-region model for reaction–diffusion process within a porous catalyst pellet[J].Chemical Engineering Science, 2016, 147:1-12[91]Niu Congcong, Li Hansheng, Xia Ming, et al.Mass transfer advantage of hierarchical structured cobalt-based catalyst pellet for Fischer-Tropsch synthesis[J].American Institute of Chemical Engineers Journal, 2021, 67(6):E17226-[92]Ye Guanghua, Zhou Xinggui, Zhou Jinghong, et al.Influence of catalyst pore network structure on the hysteresis of multiphase reactions[J].American Institute of Chemical Engineers Journal, 2017, 63(1):78-86[93]魏格林,李成祥,葛蔚,等.催化剂孔道结构设计及孔内反应-扩散耦合模拟[J].过程工程学报, 2021, 21(3):265-276[94]Li Yanping, Zhao Mingcan, Li Chengxiang, et al.Simulation study on the reaction-diffusion coupling in simple pore structures[J].Langmuir, 2017, 33(42):11804-11816[95]Li Yanping, Zhang Chenglong, Li Chengxiang, et al.Simulation of the effect of coke deposition on the diffusion of methane in zeolite ZSM-5[J].Chemical Engineering Journal, 2017, 320:458-467[96]Ge Wei, Wang Limin, Xu Ji, et al.Discrete simulation of granular and particle-fluid flows: from fundamental study to engineering application[J].Reviews in Chemical Engineering, 2017, 33(6):551-623[97]Pereira J M C, Navalho J E P, Amador A C G, et al.Multi-scale modeling of diffusion and reaction–diffusion phenomena in catalytic porous layers: Comparison with the 1D approach[J].Chemical Engineering Science, 2014, 117:364-375[98]Hansen N, Krishna R, Baten J M, et al.Analysis of diffusion limitation in the alkylation of benzene over H-ZSM-5 by combining quantum chemical calculations, molecular simulations, and a continuum approach[J].Journal of Physical Chemistry C, 2009, 113:235-246[99]Raimondeau S, Vlachos D G.Recent developments on multiscale,hierarchical modeling of chemical reactors[J].Chemical Engineering Journal, 2002, 90(1):3-23[100]Li Chengxiang, Xu Ji, Qiu Tianhao, et al.Trans-level multi-scale simulation of porous catalytic systems: Bridging reaction kinetics and reactor performance[J].Chemical Engineering Journal, 2023, 455:140745- |
[1] | 苏朔 李义雅 徐冰 成欣 卢零. 磷酸酯类极压抗磨剂构效关系的分子模拟研究[J]. 石油炼制与化工, 2024, 55(8): 99-106. |
[2] | 张芷薇 司润生 李义雅 何懿峰. 二烷基二硫代磷酸镧的合成及在润滑脂中的性能研究[J]. 石油炼制与化工, 2024, 55(8): 113-119. |
[3] | 任强 袁海鸥 张成喜 叶蔚甄 李永祥. 金属铂氧化物还原反应温度的模拟研究[J]. 石油炼制与化工, 2024, 55(7): 91-98. |
[4] | 王轲 龙军 蔡新恒 王威. 石油中金属卟啉分离和分析方法的研究进展[J]. 石油炼制与化工, 2024, 55(6): 172-178. |
[5] | 孙立鹏 鲁家荣 姜海英 赵德明 李国梁 岳远宁 李金明 辛德兴 闫昊 陈小博 刘熠斌. 二十烷、蒽和对二丁基环己烷在氧化钙中的吸附和扩散特性[J]. 石油炼制与化工, 2024, 55(10): 32-40. |
[6] | 王翀 鲁家荣 闫昊 刘熠斌 陈小博. NaX分子筛吸附天然气中酸性气的分子模拟[J]. 石油炼制与化工, 2023, 54(9): 41-50. |
[7] | 倪清 华渠成 任强 龙军 范曦 王春璐 管翠诗. 催化裂化柴油馏分在离子液体中扩散行为的分子动力学模拟研究[J]. 石油炼制与化工, 2022, 53(10): 27-33. |
[8] | 孙文斌 张倩 黄作鑫 武志强 叶蔚甄. CK-4柴油机油分散性能模拟试验评价方法的建立与添加剂结构优化[J]. 石油炼制与化工, 2021, 52(8): 83-89. |
[9] | 华腾云 张晨昕 武传朋 郭大为 毛安国. H2O影响γ-Al2O3吸附SO2、NO的机理分析[J]. 石油炼制与化工, 2020, 51(2): 50-56. |
[10] | 王春璐 解增忠 赵毅 赵晓光 王丽新 任强 叶蔚甄. H2在Fe,Pt,Ni表面解离的模拟研究[J]. , 2019, 50(2): 50-56. |
[11] | 詹国雄 沈本贤 赵亚伟 孙辉. 萃取精馏脱除MTBE中DMDS的分子模拟和气液相平衡研究[J]. 石油炼制与化工, 2017, 48(4): 12-18. |
[12] | 葛龙龙 梁宇翔 贺景坚. 酯类基础油热氧化机理研究[J]. 石油炼制与化工, 2016, 47(11): 89-94. |
[13] | 丁雪 刘熠斌 杨朝合 山红红. FCC干气在ZSM-5分子筛中吸附的分子模拟及热力学分析[J]. 石油炼制与化工, 2015, 46(9): 58-64. |
[14] | 岳鹏1 ,杨朝合1 ,胡永庆1 ,李春义2 . 环烷酸在Bronsted酸位吸附脱酸机理的研究[J]. 石油炼制与化工, 2011, 42(11): 36-40. |
[15] | 侯焕娣 王子军 张书红 李锐. 利用分子模拟技术研究不同分子筛催化1-辛烯裂解反应[J]. 石油炼制与化工, 2009, 40(2): 21-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||