石油炼制与化工 ›› 2025, Vol. 56 ›› Issue (2): 131-136.

• 分析与评定 • 上一篇    下一篇

基于高斯TCN的汽油终馏点软测量研究

仇美玲,李奇安   

  1. 辽宁石油化工大学信息与控制工程学院
  • 收稿日期:2024-07-22 修回日期:2024-09-04 出版日期:2025-02-12 发布日期:2025-01-16
  • 通讯作者: 李奇安 E-mail:liqian@lnpu.edu.cn

RESEARCH ON SOFT SENSING OF GASOLINE FINAL BOILING POINT BASED ON GAUSSIAN-TCN

  • Received:2024-07-22 Revised:2024-09-04 Online:2025-02-12 Published:2025-01-16

摘要: 石油是现代社会的主要能源之一,常压蒸馏作为炼油产业的龙头,对其过程进行实时监测尤为重要。汽油终馏点为原油蒸馏过程中蒸出最后一滴汽油时的温度,是衡量成品油质量的关键指标。介绍并评估了高斯误差线性单元(GELU)的性能,提出将GELU作为激活函数替代时间卷积网络(TCN)中的修正线性单元(ReLU),同时改变残差结构来搭建高斯TCN模型。对某炼油厂常压蒸馏塔塔顶汽油终馏点及其影响因素进行样本采集,使用偏最小二乘法(PLS)对高维自变量数据进行降维,完成汽油终馏点的辅助变量选取。使用搭建的高斯TCN软测量模型对常压蒸馏塔塔顶汽油终馏点进行预测,仿真验证所提出的模型拟合度和预测精度较传统TCN预测模型有明显的优势,为炼油产业的高效益发展提供了借鉴。

关键词: 高斯误差线性单元, 时间卷积网络, 软测量, 汽油干点

Abstract: Petroleum is one of the primary energy sources in modern society. As the leading process in the refining industry, atmospheric distillation requires real-time monitoring of its process to ensure efficiency and safety. Gasoline final point refers to the temperature at which gasoline components begin to transition from liquid to gas during the crude oil distillation process, and it is a key indicator for measuring the quality of the final product. This paper introduces and evaluates the performance of the Gaussian error linear unit (GELU), proposing the use of GELU as the activation function to replace the ReLU in the temporal convolutional network (TCN). Additionally, it modifies the residual structure to construct the Gaussian-TCN model. Samples were collected on the atmospheric tower top gasoline final point and its influencing factors at a refinery. The partial least squares (PLS) was used to reduce the dimensionality of the high-dimensional independent variable data, completing the selection of auxiliary variables for the gasoline final point. Predicting the gasoline final point at the top of the atmospheric tower using the constructed Gaussian TCN soft sensing model. Simulation results verified that the proposed model has a significantly better fit and prediction accuracy compared to traditional TCN prediction models, providing valuable insights for the high-efficiency development of the refining industry.

Key words: Gaussian error linear element, temporal convolutional network, soft sensing, gasoline final point