石油炼制与化工 ›› 2025, Vol. 56 ›› Issue (7): 147-152.

• 控制与优化 • 上一篇    下一篇

基于集成CSSOA-SVM的原油近红外光谱分析系统故障诊断方法

刘克淳1,陈夕松1,胡云云2   

  1. 1. 东南大学自动化学院
    2. 南京富岛信息工程有限公司
  • 收稿日期:2025-01-08 修回日期:2025-02-25 出版日期:2025-07-12 发布日期:2025-07-01
  • 通讯作者: 刘克淳 E-mail:220221842@seu.edu.cn
  • 基金资助:
    江苏省重点研发计划项目“新一代原油在线调合软件平台关键技术研发”

FAULT DIAGNOSIS METHOD FOR CRUDE OIL NEAR-INFRARED SPECTROSCOPY ANALYSIS SYSTEM BASED ON ENSEMBLE CSSOA-SVM

  • Received:2025-01-08 Revised:2025-02-25 Online:2025-07-12 Published:2025-07-01

摘要: 为解决原油近红外(NIR)光谱分析系统在故障诊断中存在的高维特征、易陷入局部最优解和诊断精准度不足等问题,提出了一种基于集成混沌麻雀搜索优化算法(CSSOA)优化支持向量机(SVM)模型参数寻优过程的CSSOA-SVM故障诊断方法,其克服SVM诊断精度较差、传统麻雀搜索算法(SSA)易陷入局部最优的不足,而提升了收敛速率和分类能力;进而,结合AdaBoost学习框架集成多个CSSOA-SVM基分类模型,通过动态调整样本和基分类模型权重增强了模型对复杂故障模式的识别能力和模型稳定性。结果表明,集成CSSOA-SVM分类诊断模型对6种常见故障的诊断准确率达95.48%,相较传统方法在诊断准确率、模拟收敛速率和模型稳健性方面优势显著,为原油NIR光谱分析系统的故障诊断提供了有效解决方案。

关键词: 原油近红外光谱分析系统, 故障诊断, 混沌麻雀搜索优化算法, 支持向量机优化, 集成学习

Abstract: To address the challenges of local optima, high-dimensional feature, and insufficient diagnostic accuracy in fault diagnosis of crude oil near-infrared (NIR) spectroscopy analysis system, an ensemble CSSOA-SVM-based fault diagnosis method is proposed. The chaos sparrow search optimization algorithm (CSSOA) is introduced to optimize the support vector machine (SVM) parameters, overcoming the local optima limitations of the traditional sparrow search algorithm (SSA) while preserving its rapid convergence, thus enhancing classification performance. By integrating the AdaBoost algorithm, multiple CSSOA-SVM base classifiers are combined, with dynamic adjustments to sample and classifier weights improving the recognition accuracy and robustness for complex fault patterns. Experimental results demonstrate that the proposed ensemble CSSOA-SVM model achieves a diagnostic accuracy of 95.48% across six common fault types, outperforming traditional methods in accuracy, convergence speed, and robustness, offering an effective solution for fault diagnosis in crude oil NIR spectroscopy analysis system.

Key words: crude oil near-infrared spectroscopy analysis system, fault diagnosis, chaos sparrow search optimization algorithm, support vector machine optimization, ensemble learning