[1] Ma Z H, Li S, Dong X Q, et al. Recent advances in characterization technology for value-added utilization of coal tars [J]. Fuel, 2023, 334: 126637.
[2] 张玉玉,唐瑞源,商雁超,等. 煤焦油加氢制喷气燃料催化剂的开发及性能研究[J]. 石油炼制与化工,2024, 55(4): 19-27.
[3] 雷雨辰,李冬,李稳宏,等. 煤焦油加氢精制催化剂的级配研究[J]. 石油学报(石油加工),2012, 28(1): 83-87.
[4] Deng W, Du J, Li C, et al. Exploratory investigation for the coking behavior during slurry-bed hydrocrackingof coal tar atmospheric residue [J]. Energy Fuels, 2016, 30(10): 8623-8629.
[5] Du J, Deng W, Li C, et al. Reactivity and structure changes of coal tar asphaltene during slurry-phase hydrocracking [J]. Energy Fuels, 2017, 31(2): 1858-1865.
[6] Li C, Du J, Yang T, et al. Exploratory investigation on the slurry-phase hydrocracking reaction behavior of coal tar and petroleum-based heavy oil mixed raw material [J]. Energy Fuels, 2019, 33(9): 8471-8482.
[7] Luo H, Deng W, Gao J, et al. Dispersion of water-soluble catalyst and its influence on the slurry-phase hydrocracking of residue [J]. Energy fuels, 2011, 25(3): 1161-1167.
[8] Suwaid M A, Al-Mishaal O F, Al-Muntaser A A, et al. Water-Soluble Catalysts Based on Nickel and Iron for In Situ Catalytic Upgrading of Boca de Jaruco High-Sulfur Extra-Heavy Crude Oil [J]. Energy Fuels, 2023, 38(2): 1098-1110.
[9] Yang T, Zhang S, Zhu Y, et al. An oil-soluble precursor with strong feedstock adaptability and excellent product selectivity for heavy oil hydrocracking [J]. Chemical Engineering Research and Design, 2023, 192: 593-605.
[10] Rawat A, Dhakla S, Maity S K, et al. Mechanistic insight into the coke formation tendency during upgradation of crude oil in slurry phase batch reactor using MoS2 and its various oil soluble catalysts [J]. Fuel, 2024, 359: 130433.
[11 ]Fryd M M, Mason T G. Advanced nanoemulsions [J]. Annual review of physical chemistry, 2012, 63(1): 493-518.
[12] Li C, Li J, Yang T, et al. Formation of Ni–MoS3 Hollow Material with Enhanced Activity in Slurry-phase Hydrogenation of Heavy Oil [J]. Energy Fuels, 2019, 33(11): 10933-10940.
[13] Luo H, Sun J, Deng W, et al. Preparation of Oil-soluble Fe-Ni sulfide nanoparticles for Slurry-Phase hydrocracking of residue [J]. Fuel, 2022, 321: 124029.
[14] 杨豆,张卫波. O/W型微乳液的制备及稳定性的研究[J]. 中国洗涤用品工业,2018 (2): 47-52.
[15] Baloch M K, Hameed G. Emulsification of oil in water as affected by different parameters [J]. Journal of colloid and Interface Science, 2005, 285(2): 804-813.
[16] Song M G, Cho S H, Kim J Y, et al. Novel evaluation method for the water-in-oil (W/O) emulsion stability by turbidity ratio measurements [J]. Korean Journal of Chemical Engineering, 2002, 19: 425-430.
[17] 杨立志,赵琳,罗根祥. 浊度比法测定乳化蜡稳定性研究[J]. 石油炼制与化工,2011, 42(8): 93-96.
[18] 高玉生,吴本芳,高晋生, 等. 浊度法用于高凝稠油乳化剂的配方筛选[J]. 华东理工大学学报(自然科学版),2012, 38(2): 149-154.
[19] Yang T, Liu C, Deng W, et al. Influence of the iron proportion on the efficiency of an oil-soluble Ni–Fe catalyst applied in the co-liquefaction of lignite and heavy residue [J]. Industrial Engineering Chemistry Research, 2019, 58(41): 19072-19081.
[20] Nguyen T S, Tayakout-Fayolle M, Lacroix M, et al. Promotion effects with dispersed catalysts for residue slurry hydroconversion [J]. Fuel, 2015, 160: 50-56.
[21] Sun G, Liu D, Li M, et al. Atomic coordination structural dynamic evolution of single-atom Mo catalyst for promoting H2 activation in slurry phase hydrocracking [J]. Science Bulletin, 2023, 68(5): 503-515.
[22] Yang T, Liu C, Li C, et al. Promotion effect with dispersed Fe-Ni-S catalyst to facilitate hydrogenolysis of lignite and heavy residue [J]. Fuel, 2020, 259: 116303.
[23] Bezverkhyy I, Afanasiev P, Danot M. Preparation of Highly Dispersed Pentlandites (M, M’)9S8 (M, M’= Fe Co, Ni) and Their Catalytic Properties in Hydrodesulfurization [J]. The Journal of Physical Chemistry B, 2004, 108(23): 7709-7715. |